90 resultados para submarine pipeline


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Wave-soil-pipe coupling effect on the untrenched pipeline stability on sands is for the first time investigated experimentally. Tests are conducted in the U-shaped water tunnel, which generates an oscillatory how, simulating the water particle movements with periodically changing direction under the wave action. Characteristic times and phases during the instability process are revealed. Linear relationship between Froude number and non-dimensional pipe weight is obtained. Effects of initial embedment and loading history are observed. Test results between the wavesoil-pipe interaction and pipe-soil interaction under cyclic mechanical loading are compared. The mechanism is briefly discussed. For applying in the practical design, more extensive and systematic investigations are needed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Unlike most previous studies on vortex- induced vibrations of a cylinder far from a boundary, this paper focuses On the influences of close proximity of a submarine pipeline to a rigid seabed boundary upon the dynamic responses of the pipeline in ocean currents. The effects of gap-to-diameter ratio and those of the stability parameter on the amplitude and frequency responses of a pipeline are investigated experimentally with a novel hydro-elastic facility. A comparison is made between the present experimental results Of the amplitude and frequency responses for the pipes with seabed boundary effects and those for wall-free cylinders given by Govardhan and Williamson (2000) and Anand ( 1985). The comparison shows that the close proximity of a pipeline to seabed has much influence on the vortex- induced vibrations of the pipeline. Both the width of the lock-in ranges in terms of V, and the dimensionless amplitude ratio A(max)/D become larger with the decrease of the gap-to-diameter ratio e/D. Moreover, the vibration of the pipeline becomes easier to occur and its amplitude response becomes more intensive with the decrease of the stability parameter, while the pipeline frequency responses are affected slightly by the stability parameter.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Wave-induced instability of untrenched pipeline on sandy seabed is a `wave-soil-pipeline' coupling dynamic problem. To explore the mechanism of the pipeline instability, the hydrodynamic loading with U-shaped oscillatory flow tunnel is adopted, which is quite different from the previous experiment system. Based on dimensional analysis, the critical conditions for pipeline instability are investigated by altering pipeline submerged weight, diameter, soil parameters, etc. Based on the experimental results, different linear relationships between Froude number (Fr) and non-dimensional pipeline weight (G) are obtained for two constraint conditions. Moreover, the effects of loading history on the pipeline stability are also studied. Unlike previous experiments, sand scouring during the process of pipe's losing stability is detected in the present experiments. In addition, the experiment results are compared with the previous experiments, based on Wake II model for the calculation of wave-induced forces upon pipeline. It shows that the results of two kinds of experiments are comparable, but the present experiments provide better physical insight of the wave-soil-pipeline coupling effects.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Most of the existing researches either focus on vortex-induced-vibrations (VIV) of a pipeline near a rigid boundary, or on seabed scour around a fixed pipeline. In the fields, pipeline vibration and seabed scour are actually always coupled. Based on the similarity analysis, a series of tests were conducted with a hydro-elastic facility to investigate the influence of pipe vibration on the local scour and the effects of scour process on the pipeline dynamic responses. Experimental results indicate that, there exist two phases in the process of sand scouring around the pipeline with small embedment, i.e. Phase I: scour beneath pipe without VIV, and Phase II: scour with VIV of pipe. It is also found that the gap-to-diameter ratio (e/D) has much effect upon the scour depth for the fixed pipes. For a given value of e/D, the vibrating pipes with close proximity to seabed may induce a deeper scour hole than the fixed ones. Within the examined gap-to-diameter ratio range (425 < e/D < 0.75), the influences of gap-to-diameter ratio on the maximum values of scour-depth for the case of vibrating pipes are not as much as those for the case of fixed pipes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

For better understanding the mechanism of the occurrence of pipeline span for a pipeline with initial embedment, physical and numerical methods are adopted in this study. Experimental observations show that there often exist three characteristic phases in the process of the partially embedded pipeline being suspended: (a) local scour around pipe; (b) onset of soil erosion beneath pipe; and (c) complete suspension of pipe. The effects of local scour on the onset of soil erosion beneath the pipe are much less than those of soil seepage failure induced by the pressure drop. Based on the above observations and analyses, the mechanism of the occurrence of pipeline spanning is analyzed numerically in view of soil seepage failure. In the numerical analyses, the current-induced pressure along the soil surface in the vicinity of the pipe (i.e. the pressure drop) is firstly obtained by solving the N-S equations, thereafter the seepage flow in the soil is calculated with the obtained pressure drop as the boundary conditions along the soil surface. Numerical results indicate that the seepage failure (or piping) may occur at the exit of the seepage path when the pressure gradient gets larger than the critical value. The numerical treatment provides a practical tool for evaluating the potentials for the occurrence of pipe span due to the soil seepage failure.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper considers the lift forces acting on a pipeline with a small gap between the pipeline and the plane bottom or scoring bottom. A more reasonable fluid force on the pipeline has been obtained by applying the knowledge of modified potential theory (MPT), which includes the influences of the downstream wake. By finite element method, an iteration procedure is used to solve problems of the nonlinear fluid-structure interaction. Comparing the deflection and the stress distributions with the difference sea bottoms, the failure patterns of a spanning pipeline have been discussed. The results are essential for engineers to assess pipeline stability.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The existing Det Norske Veritas DNV Recommended Practice RP E305 for pipeline on-bottom stability is mainly based on the pipe–soil interaction model reported by Wagner et al. in 1987, and the wake model reported by Lambrakos et al. in 1987, to calculate the soil resistance and the hydrodynamic forces upon pipeline, respectively. Unlike the methods in the DNV Practice, in this paper, an improved analysis method is proposed for the on-bottom stability of a submarine pipeline, which is based on the relationships between Um/ gD 0.5 and Ws / D2 for various restraint conditions obtained by the hydrodynamic loading experiments, taking into account the coupling effects between wave, pipeline, and sandy seabed. The analysis procedure is illustrated with a detailed flow chart. A comparison is made between the submerged weights of pipeline predicted with the DNV Practice and those with the new method. The proposed analysis method may provide a helpful tool for the engineering practice of pipeline on-bottom stability design.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Based on similarity analyses, a series of experiments have been conducted with a newly established hydro-elastic facility to investigate the transverse vortex-induced vibrations (VIVs) of a submarine pipeline near an erodible sandy seabed under the influence of ocean currents. Typical characteristics of coupling processes between pipe vibration and soil scour in the currents have been summarized for Case 1: pipe is laid above seabed and Case 11: pipe is partially embedded in seabed on the basis of the experimental observations. Pipe vibration and the corresponding local scour are usually two coupled physical processes leading to an equilibrium state. The influence of initial gap-to-diameter ratio (e(0)/D) on the interaction between pipe vibration and local scour has been studied. Experimental results show that the critical values of V-r for the initiation of VIVs of the pipe near an erodible sand bed get bigger with decreasing initial gap-to-diameter ratio within the examined range of e(0)/D (-0.25 < e(0)/D < 0.75). The comparison of the pipe vibrations near an erodible soil with those near a rigid boundary and under wall-free conditions indicates that the vibration amplitudes of the pipe near an erodible sand bed are close to the curve fit under wall-free conditions; nevertheless, for the same stability parameter, the maximum amplitudes for the VIV coupled with local scour increase with the increase of initial gap-to-diameter ratio. (c) 2007 Elsevier Ltd. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Unlike previous mechanical actuator loading methods, in this study, a hydrodynamic loading method was employed in a flow flume for simulating ocean currents induced submarine pipeline stability on a sandy seabed. It has been observed that, in the process of pipeline losing lateral stability in currents, there usually exist three characteristic times: (1) onset of sand scour; (2) slight lateral displacement of pipeline; and (3) breakout of pipeline. An empirical linear relationship is established between the dimensionless submerged weight of pipeline and Froude number for describing pipeline lateral stability in currents, in which the current-pipe-soil coupling effects are reflected. Scale effects are examined with the method of "modeling of models," and the sand particle size effects on pipeline stability are also discussed. Moreover, the pipeline stability in currents is compared with that in waves, which indicates that the pipeline laid directly upon the sandy seabed is more laterally stable in currents than in waves.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Ocean-current-induced pipeline stability on sandy seabed was simulated physically in a flow flume. The process of pipeline losing onbottom stability in currents was recorded and analyzed. Experimental data show that, for a pipeline directly laid on sandy seabed, there exists a linear relationship between the dimensionless submerged weight of pipeline and Froude number, in which the current-pipe-soil coupling effects are reflected. The sand-particle size effects on pipeline onbottom stability are further discussed. The new established empirical relationship may provide a guide for the engineering practice of current-induced on-bottom stability design of a submarine pipeline.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The initiation of pipeline spanning involves the coupling between the flow over the pipeline and the seepage-flow in the soil underneath the pipeline. The pipeline spanning initiation is experimentally observed and discussed in this article. It is qualitatively indicated that the pressure-drop induced soil seepage failure is the predominant cause for pipeline spanning initiation. A flow-pipe-seepage sequential coupling Finite Element Method (FEM) model is proposed to simulate the coupling between the water flow-field and the soil seepage-field. A critical hydraulic gradient is obtained for oblique seepage failure of the sand in the direction tangent to the pipe. Parametric study is performed to investigate the effects of inflow velocity, pipe embedment on the pressure-drop, and the effects of soil internal friction angle and pipe embedment-to-diameter ratio on the critical flow velocity for pipeline spanning initiation. It is indicated that the dimensionless critical flow velocity changes approximately linearly with the soil internal friction angle for the submarine pipeline partially-embedded in a sandy seabed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

考虑海床刚度,研究了埋设悬跨海底管道在热膨胀引起的轴向压力下的屈曲问题。传统方法是将悬跨管道简化为两端简支或者两端固支梁来处理。基于欧拉.伯努利梁理论,考虑线弹性海床刚度和轴向压力,建立并求解了埋设段管道和悬跨段管道在自重作用下的四阶常微分方程,获得了两段管道的静挠度和内力的解析公式。通过对静挠度的特性分析,给出了埋设管道段和悬跨管道段的稳定性判断准则。

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this paper, a series of experiments have been conducted in a U-shaped oscillatory flow tunnel, which provides a more realistic simulation than the previous actuator loading methods. Based on the experimental data of pipe displacement with two different constraint conditions (freely laid pipelines and anti-rolling pipelines), three characteristic times in the process of pipeline losing stability are identified. The effects of sand size on the pipeline lateral stability are examined for freely laid pipelines. The empirical relationships between non-dimensional pipeline weight (G) and Fronde number (Fr-b) are established for different constraint conditions, which will provide a guide for engineering practice. (C) 2002 Elsevier Science Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

采用量纲分析法建立了海底管道局部冲刷的相似准则,利用模型实验研究了管道局部冲刷的物理过程,以及极限平衡冲刷深度的影响因素。实验观测发现,对于初始嵌入深度较小的管道而言,局部冲刷一般可分为管道悬空、间隙冲刷、尾迹冲刷和平衡冲刷四个特征阶段。在亚临界流动范围内,管道极限平衡冲刷深度与雷诺数的相关性较小。在清水冲刷条件下,无量纲极限平衡冲刷深度随希尔兹数的增加而增大;在所研究的初始间隙比范围内(-0.25〈e_0/D〈0.55),极限平衡冲刷深度与初始间隙比之间大致呈线性递减关系。

Relevância:

60.00% 60.00%

Publicador:

Resumo:

针对裸露悬跨海底管道,考虑线弹性海床刚度,利用梁的小挠度理论,研究管道在自重作用下的变形和内力,推导给出了未脱离海床的管道段和悬跨管道段的变形和内力公式。在跨度较大的悬跨情况下,悬跨管道段较大的向下弯曲变形可能引起海床上管道脱离海床而翘起。建立管道翘起的判定准则,对于翘起情况推导相应的计算公式,通过算例给出翘起情况下管道的变形和内力。通过计算分析发现:工程上多数悬跨是翘起情况,没有翘起的计算公式只适应于跨度较小的悬跨管道。同时翘起情况下不同海床刚度对悬跨管道无量纲内力影响不大。