69 resultados para spring program
Resumo:
Algal bloom phenomenon was defined as "the rapid growth of one or more phytoplankton species which leads to a rapid increase in the biomass of phytoplankton", yet most estimates of temporal coherence are based on yearly or monthly sampling frequencies and little is known of how synchrony varies among phytoplankton or of the causes of temporal coherence during spring algal bloom. In this study, data of chlorophyll a and related environmental parameters were weekly gathered at 15 sampling sites in Xiangxi Bay of Three-Gorges Reservoir (TGR, China) to evaluate patterns of temporal coherence for phytoplankton during spring bloom and test if spatial heterogeneity of nutrient and inorganic suspended particles within a single ecosystem influences synchrony of spring phytoplankton dynamics. There is a clear spatial and temporal variation in chlorophyll a across Xiangxi Bay. The degree of temporal coherence for chlorophyll a between pairs of sites located in Xiangxi Bay ranged from -0.367 to 0.952 with mean and median values of 0.349 and 0.321, respectively. Low levels of temporal coherence were often detected among the three stretches of the bay (Down reach, middle reach and upper reach), while high levels of temporal coherence were often found within the same reach of the bay. The relative difference of DIN between pair sites was the strong predictor of temporal coherence for chlorophyll a in down and middle reach of the bay, while the relative difference in Anorganic Suspended Solids was the important factor regulating temporal coherence in middle and upper reach. Contrary to many studies, these results illustrate that, in a small geographic area (a single reservoir bay of approximately 25 km), spatial heterogeneity influence synchrony of phytoplankton dynamics during spring bloom and local processes may override the effects of regional processes or dispersal.
Resumo:
In China, especially in Three-Gorges Reservoir, our knowledge of the algal growth potential and nutrient limitation was still limited. In the spring of 2006, the water column ratios of total nitrogen/total phosphorus were investigated and algal bioassays performed to determine algal growth potential of waters and nutrient limitation of mainstream and Xiangxi Bay of Three-Gorges Reservoir. The results showed sampling sites in mainstream were co-limited by N and P or P-limited alone, and sites in Xiangxi Bay were N-limited alone. Fe likely played an important role in determining the appearance and disappearance of algal blooms of Three-Gorges Reservoir. Native algae, Pseudokirchneriella subcapitata and Cyclotella meneghiniana, had high growth potential in Three-Gorges Reservoir.
Spring Diatom Blooming Phases in a Representative Eutrophic Bay of the Three-Gorges Reservoir, China
Resumo:
We investigated dynamics of the phytoplankton community and abiotic factors in Xiangxi Bay of the Three-Gorge Reservoir, China, by daily sampling, a specific site during a spring algal bloom (February 23-April 28, 2005). Among the 76 taxa observed, Asterionella formosa and Cyclotella spp. were the dominants, accounting for 47.2% and 29.9% of the total abundance, respectively. We determined the five distinct developing phases of the bloom by analyzing the dissimilarity of physicochemical parameters. Simultaneously, six phytoplankton community groups were distinguished by TWINSPAN classifications. The pattern for algal community succession was similar to that for the bloom phase shift, and the structural complexity of communities significantly decreased over time. Water temperature and silicate were the main factors that related to the development of the bloom and the shifts of the phytoplankton community.
Resumo:
The late stage of the North East Atlantic (NEA) spring bloom was investigated during June 2005 along a transect section from 45 to 66 degrees N between 15 and 20 degrees W in order to characterize the contribution of siliceous and calcareous phytoplankton groups and describe their distribution in relation to environmental factors. We measured several biogeochemical parameters such as nutrients, surface trace metals, algal pigments, biogenic silica (BSi), particulate inorganic carbon (PIC) or calcium carbonate, particulate organic carbon, nitrogen and phosphorus (POC, PON and POP, respectively), as well as transparent exopolymer particles (TEP). Results were compared with other studies undertaken in this area since the JGOFS NABE program. Characteristics of the spring bloom generally agreed well with the accepted scenario for the development of the autotrophic community. The NEA seasonal diatom bloom was in the late stages when we sampled the area and diatoms were constrained to the northern part of our transect, over the Icelandic Basin (IB) and Icelandic Shelf (IS). Coccolithophores dominated the phytoplankton community, with a large distribution over the Rockall-Hatton Plateau (RHP) and IB. The Porcupine Abyssal Plain (PAP) region at the southern end of our transect was the region with the lowest biomass, as demonstrated by very low Chla concentrations and a community dominated by picophytoplankton. Early depletion of dissolved silicic acid (DSi) and increased stratification of the surface layer most likely triggered the end of the diatom bloom, leading to coccolithophore dominance. The chronic Si deficiency observed in the NEA could be linked to moderate Fe limitation, which increases the efficiency of the Si pump. TEP closely mirrored the distribution of both biogenic silica at depth and prymnesiophytes in the surface layer suggesting the sedimentation of the diatom bloom in the form of aggregates, but the relative contribution of diatoms and coccolithophores to carbon export in this area still needs to be resolved.
Resumo:
Forced dissociation of selectin-ligand bonds is crucial to such biological processes as leukocyte recruitment, thrombosis formation, and tumor metastasis. Although the bond rupture has been well known at high loading rate r(f) (>= 10(2) pN/s), defined as the product of spring constant k and retract velocity v, how the low r(f) (< 10(2) pN/s) or the low k regulates the bond dissociation remains unclear. Here an optical trap assay was used to quantify the bond rupture at r(f) <= 20 pN/s with low k (similar to 10(-3)-10(-2) pN/nm) when P-selectin and P-selectin glycoprotein ligand 1 (PSGL-1) were respectively coupled onto two glass microbeads. Our data indicated that the bond rupture force f retained the similar values when r(f) increased up to 20 pN/s. It was also found that f varied with different combinations of k and v even at the same r(f). The most probable force, f
Resumo:
Silicon nitride with helical structure was prepared on a large scale by CVD. On the microscale, these coiled Si3N4 ceramics still possess superelasticity and can recover their original shapes after cyclic loadings without noticeable deformations. These results suggest helical microcoils could have potential in microdevices for MEMS, motors, electromagnets, generators, and related equipment.
Resumo:
We conducted phylogenetic analyses to identify the closest related living relatives of the Xizang and Sichuan hot-spring snakes (T baileyi and T. zhaoermii) endemic to the Tibetan Plateau, using mitochondrial DNA sequences (cyt b, ND4) from eight specimen