397 resultados para spectra properties
Resumo:
The (Y, Gd) BO3 : Eu phosphor was synthesized by solid-state reaction, The UV spectra showed that in a certain range of Gd3+ concentration, more Gd3+ absorbed energy and transferred it to Eu3+ with its increasing concentration. From the spectra in VUV region, it was observed that both the doping and the concentrations of Gd3+, Eu3+ greatly affected the absorption of the host lattice. The absorbances at 147 nm and 170 nm increased when the Gd3+ was doped which can be explained as that Gd3+ transferred energy to BO4. The optical properties of (Y, Gd)BO3 : Eu were the best when the concentration of Eu3+ was about 0.04.
Resumo:
K7H6[Nd(GeMo11O39)2].18H2O was first synthesized and the crystal structure was determined. Crystal structure data are as follows: monolinic, space group P2(1)/n, a = 1.7095(4), b = 2.6895(3), c = 2.1214(5) nm, beta = 103.11 (2)-degrees, V = 9.4994(3) nm3, Z = 4, D(m) = 3.14g/cm3, D(c) = 3.05g/cm3, mu(MoK-alpha) = 43.7 cm-1. Experimental evidence and theoretical foundation of the method inferring the molecule structure of heteropoly compounds using their IR spectra were gaved by studying IR spectra properties of the complex with results of structural analysis. Electronic spectra prove that 4f-obital of Nd3+ take part in bonding in the complex.
Resumo:
We investigate the effect of the electric field maximum on the Rabi flopping and the generated higher frequency spectra properties by solving Maxwell-Bloch equations without invoking any standard approximations. It is found that the maximum of the electric field will lead to carrier-wave Rabi flopping (CWRF) through reversion dynamics which will be more evident when the applied field enters the sub-one-cycle regime. Therefore, under the interaction of sub-one-cycle pulses, the Rabi flopping follows the transient electric field tightly through the oscillation and reversion dynamics, which is in contrast to the conventional envelope Rabi flopping. Complete or incomplete population inversion can be realized through the control of the carrier-envelope phase (CEP). Furthermore, the generated higher frequency spectra will be changed from distinct to continuous or irregular with the variation of the CEP. Our results demonstrate that due to the evident maximum behavior of the electric field, pulses with different CEP give rise to different CWRFs, and then different degree of interferences lead to different higher frequency spectral features.
Resumo:
利用蓝绿激光对非晶态Ge2Sb2Te5相变薄膜进行擦除性能的研究,分别用1000ns,500ns,100ns,60ns脉宽的蓝绿激光进行实验,结果表明,一定脉宽下,反射率对比度随擦除功率的增加而增大,并且,在1000ns,500ns,100ns,60ns的激光作用时间范围内,非晶态薄膜均可转变成晶态,对于脉宽为60ns的蓝绿激光,擦除功率大于4.49mW后,薄膜的反射率对比度高于15%,这表明Ge2Sb2Te5相变薄膜在短脉宽、低擦除功率条件下,可具有较高的晶化速度,同时,分析了非晶态和晶态Ge2Sb2T
Resumo:
High-quality 2at%-doped Yb:CaF2 and Yb,Na:CaF2 single crystals with diameter of 76mm were grown by the temperature gradient technique. For the first time, distribution coefficients (KO) of Yb in the two crystals were determined to be 1.07 and 0.91, respectively, by measuring the Yb concentrations at the growth starting position in the as-grown boules. Absorption and emission spectra of the two different crystals were measured at room temperature. Experimental results show that Na+ ions codoping with Yb3+ as charge compensators make Yb3+ ions in CaF2 lattice to be a quasi-single-center system, and greatly suppress the deoxidization of Yb3+ to Yb2+ (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
采用石墨电阻加热的温梯法生长了V:YAG晶体,晶体的不同部位呈现两种不同的颜色:浅绿色和黄褐色.通过对比分析不同颜色V:YAG晶体的室温吸收光谱,推断出石墨发热体高温下扩散出来的C可以起到还原作用,提高晶体中V^3+tetra离子的浓度,同时诱导了F心的形成.在1300℃下,对不同颜色的V:YAG晶体进行真空退火处理,发现处于八面体格位中的V^3+离子在热激发作用下与近邻的四面体格位Al^3+离子存在置换反应,由此产生一定浓度的四面体格位V^3+离子.同时,F心在退火过程中被完全消除,释放出来的自由电子被
Resumo:
Spectra properties of Ce3+ ions and Eu2+ ions in KZnF3 were studied and energy transfer from Ce3+ to Eu2+ was observed in co-doped with Ce3+ and Eu2+ systems. Quantum yields of energy transfer were calculated, The investigated mechanism of energy transfer is electric dipole-dipole interactions, We also noticed that the existence of Ce3+ is conductive to observe f-f transition emission of Eu2+ ions.
Resumo:
We report a quantum-chemical study of electronic, optical and charge transporting properties of four platinum (II) complexes, pt((CN)-N-Lambda)(2) ((CN)-N-Lambda=phenylpyridine or thiophenepyridine). The lowest-lying absorptions at 442, 440, 447 and 429 nm are all attributed to the mixed transition characters of metal-to-ligand charge transfer (MLCT) and ligand-centered (LC) pi - pi(*) transition. While, unexpectedly, the lowest-lying phosphorescent emissions at 663, 660, 675 and 742 nm are mainly from metal-to-ligand charge transfer ((MLCT)-M-3) ligand-centered (LC) pi ->pi* transition. Ionization potential (IP), electron affinities (EA) and reorganization energy P (lambda(hole/electron)) were obtained to evaluate the charge transfer and balance properties between hole and electron.
Resumo:
We reported, for the first time to the best of our knowledge, the Sm3+ -doped yttriurn oxysulfide phosphors has reddish orange long-lasting phosphorescence. The phosphor show prominent luminescence in reddish orange due to the electronic transitions of (4)G(5/2) --> H-6(J) (J = 5/2, 7/2, 9/2), the afterglow color of this type of phosphors is a mixture of the three above mentioned electronic transition emissions and have a little different when the concentration of the Sm3+ dopant changes. Synthesis procedure of the Sm3+-yttrium oxysulfide reddish orange phosphor through the flux fusion method with binary flux compositions was presented. The synthesized phosphors were analyzed using X-ray diffraction (XRD) to interpret the structural characterization. The XRD analysis result reveal that the Y2O2S:Sm3+ phosphor synthesized with a binary flux composition containing (S and Na2CO3 at a ratio of 1: 1 at 30 wt.% of total raw material) at 1050degreesC for 3 h was in single-phase. Luminescence properties of the Y2O2S:Sm3+ long-lasting phosphor was analyzed by measuring the excitation spectra, emission spectra and afterglow decay curve. The mechanism of the strong afterglow from Y2O2S:Sm3+ was also discussed in this paper.
Resumo:
The infrared spectra of BaLnB(9)O(16):Re, along with the VUV excitation spectra, have been measured. The spectra were tentatively interpreted in terms of the data on absorptions of the borate groups and band structure. It was observed that there are absorption due to BO3 and BO4 groups, indicating that there are BO3 and BO4 groups in BaLnB(9)O(16). It is found that absorption of the borate groups is located in the range from 120 to 170 mn. This result reveals that there is an energy transfer from host to the rare earth ions. It also observed that the energy of charge transfer band, the host absorption, the total crystal field splitting of d-levels of Tb3+ increase with the decrease in the Ln(3+) radius. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
Three kinds of TiO2 nanostructured thin films and their CdS-sensitized films, consisting of different sizes of TiO2 nanoparticles prepared with different methods, have been investigated. The surface photovoltage spectra (SPS) measurements indicate that the density of surface states on TiO2 is likely dependent upon the details of prepared methods. TiO2 particles prepared from basic sol have more surface states than that prepared from acidic sol. When the TiO2 thin films prepared using the TiO2 sols were sensitized by CdS particles, the SPS responses relative to the surface states on TiO2 from 350 to 800 nm were decreased. The photoelectrochemical properties of nanostructured TiO2 electrodes suggest that the fewer the surface states and the smaller the particle sizes of TiO2, the larger the photocurrent response. For CdS sensitized TiO2 thin film electrode, it is shown that the semiconductor sensitization is an efficient way to decrease the influence of surface states on the charge separation, and can improve the intensity of photocurrent response. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
Regular ZnO tetrapods with different morphologies have been obtained on Si(100) substrate via the chemical vapour deposition approach. Varying the growth temperature and gas rate, we have obtained different structured ZnO materials: tetrapods with a large hexagonal crown, a flat top and a small hexagonal crown. The results suggest that these tetrapods are all single crystals with a wurtzite structure that grow along the (0001) direction. However, photoluminescence spectra shows that their optical properties are quite different: for those with large hexagonal crown, the green emission overwhelms that of the near band-edge (NBE) ultraviolet (UV) peak, while others have only a strong NBE UV peak at ~386 nm.
Resumo:
Viscoelastic deformation and creep behavior of La- and Ce-based bulk metallic glasses (BMGs) with low glass transition temperature are investigated through nanoindentation at room temperature. Creep compliance and retardation spectra are derived to study the creep mechanism. The time-dependent displacement can be well described by a generalized Kelvin model. A modification is proposed to determine the elastic modulus from the generalized Kelvin model. The results are in excellent agreement with the elastic modulus determined by uniaxial compression tests. (c) 2007 Published by Elsevier B.V.
Resumo:
We study phonon properties of one-dimensional nanocrystalline solids that are associated with a model nanostructured sequence. A real-space renormalization-group approach, connected with a series of renormalization-group transformations, is developed to calculate numerically the local phonon Green's function at an arbitrary site, and then the phonon density of states of these kinds of nanocrystalline chains. Some interesting phonon properties of nanocrystalline chains are obtained that are in qualitative agreement with the experimental results for the optical-absorption spectra of nanostructured solids.
Resumo:
A novel metallized azo dye has been synthesized. The absorption spectra of the thin film and thermal characteristic are measured. Static optical recording properties with and without the Bi mask layer super-resolution near-field structure (Super-RENS) of the metal-azo dye are investigated. The results show that the metal-azo dye film has a broad absorbance band in the region of 450-650 nm and the maximum absorbance wavelength is located at 603 nm. It is also found that the new metallized azo dye occupies excellent thermal stability, initiatory decomposition temperature is at 270 degrees C and the mass loss is about 48% in a narrow temperature region (15 degrees C). The complex refractive index N (N = n + ik) is measured. High refractive index (n = 2.45) and low extinction coefficient (k = 0.2) at the recording wavelength 650nm are attained. Static optical recording tests with and without Super-RENS are carried out using a 650nm semiconductor diode laser with recording power of 7mW and laser pulse duration of 200ns. The AFM images show that the diameter of recording mark on the dye film with the Bi mask layer is reduced about 42%, compared to that of recorded mark on the dye film without Super-RENS. It is indicated that Bi can well performed as a mask layer of the dye recording layer and the metallized azo dye can be a promising candidate for recording media with the super-resolution near-field structure.