174 resultados para seed weight


Relevância:

60.00% 60.00%

Publicador:

Resumo:

岷江柏(Cupressus chenggiana S. Y. Hu)是我国川甘地区特有的珍稀濒危乔木,一般生长在干旱的河谷区,在涵养水源和保护水 土等方面起着重要的作用。本文选择4个岷江柏种群,采用了野外调查和室内实验相结合的研究方法,调查岷江柏种群结实状况, 分析种子和球果形态特征,阐明种子发芽的基本特征,研究岷江柏种子贮藏过程中几个生理指标的动态变化特点,目的是为岷江柏 种苗繁育、自然更新能力评估以及珍稀濒危机制分析提供理论依据。研究得出如下结论:1.岷江柏球果呈椭球形,长为1.5~ 2.2cm,宽为1.5~1.9cm,质量为1.7~4.2g,球果鳞片数量为8~11片,球果内种子数量一般在40~70粒。岷江柏种子为椭圆形,长 为3.58~4.02mm,宽为3.10~3.15mm,厚为0.96~1.11mm,千粒重为3.1~3.5g。岷江柏的结实率很低,并且有显著的地理差异和 大小年差异。2. 岷江柏种子发芽温度范围是5℃~30℃,其中种子的适宜发芽温度范围是10℃~25℃。种子最适发芽温度随着贮藏 时间的增加而变化。在适宜温度范围内,种子发芽周期为20d。温度对种子的发芽势和T50有显著影响,对种子发芽率没有显著影响 ;光照有利于种子发芽;岷江柏种子的发芽特征是岷江柏保护种子资源、防止物种濒危的一种环境适应,有助于岷江柏种子提高发 芽率和幼苗的存活率。岷江柏种子是一种耐贮藏的正常性种子,在短期贮藏过程中,贮藏温度和种子含水量对于种子生理指标和种 子发芽没有显著影响。3. 岷江柏种子在短期贮藏过程中,千粒重没有显著变化;含水量都经历了先下降,再稳定的过程;粗脂肪 含量和可溶性糖含量逐渐降低;可溶性蛋白含量和丙二醛含量逐渐增加;脯氨酸含量在贮藏1~7个月时变化差异不明显,但是贮藏 7~10个月后显著增加。岷江柏种子的各个生理指标之间的相关性差异不显著。4. 岷江柏球果和种子的形态特征存在显著的地理差 异。岷江柏种子的发芽能力的地理性差异不大,种群间差异不大。岷江柏种群的地理差异由种群特征、生境特征和气候特征共同决 定。5. 在岷江柏的人工繁育中,对于刚刚采集的种子,发芽温度在15℃~25℃比较适合,其中以25℃最佳;而对于短期贮藏(4~ 10个月)后的种子,发芽温度在10℃~25℃均可,以15℃~20℃为最佳。野外播种的最适时间为4~6月,6~9月的间歇性干旱和降 水波动可能是限制岷江柏自然更新的因素之一。在短期贮藏过程中,种子可以采用常规室温贮藏,可以节约成本。Cupressus chenggiana is a specific and endangered plant in Sichuan and Gansu provinces of China, and it usually grows in dry valley and plays an important role in water supply and soil and water conservation in the dry valley of alpine and canyon region of southwest China. The research selected four Cupressus chenggiana populations and used the methods of the field investigation and the lab experiments. The fruiting characters of Cupressus chenggiana populations, the morphological characters of seeds and cones, the germination characters of seeds and the store physiological dymatics of several factors of seeds have been studied in order to give some theoretical advices on the artificial propagation and the ability of natural regeneration and the endangered principle of Cupressus chenggiana in the paper. The main results may be clarified as follows: 1. The cones of Cupressus chenggiana are ellipsoidal, length ranged from 1.5 to 2.2cm, with ranged from 1.5 to 1.9 cm, weight ranged from 1.7 to 4.2g, the number of cone squama ranged from 8 to 11, and the seed number of per cone ranged from 40 to 70. The seeds of Cupressus chenggiana are elliptical, length ranged from 3.58 to 4.02 mm, width ranged from 3.10 to 3.15 mm, thickness ranged from 0.96 to 1.11 mm, and the weight of 1000 seeds ranged from 3.1 to 3.5g. The fruiting rate of Cupressus chenggiana is very low, and the fruiting period of Cupressus chenggiana has the geographical differences and the big or small year differences. 2. Seed germination temperature is between 5℃ and 30℃, while the suited temperature is between 10℃ and 25℃. The optimum temperature of seed germination will change as the store time of seeds changes logner. The cycle of seed germination can persist 20 days in the range of the suited temperature. The germination temperatures have significant influences on the germination potential and T50, but have no significant infuluences on the germination rate. The photoperiod is in favor of seed germination. The characters of Cupressus chenggiana seed germination represent a kind of environmental adaptability to protect the seed sources and endangered species, and it can give help to increase the germination rate of seeds and the livability of seedings. The seeds of Cupressus chenggiana are a kind of orthodox seeds that can endure the long time storage. In the short time storage, the store temperatures and the moisture contents of seeds have no significant infuluences on the physiological factors and the germination of seeds, but the store time has significant influences on the physiological factors of seeds. 3. In the short store course of Cupressus chenggianna seeds, the 1000 seed weight has no significant variation; The moisture content descends at the beginning of the storage, but has no significant variation later; The crude fat content and the soluble sugar content descend gradually; The soluble protein content and MDA content increase gradually; The praline content has no significant variation after 1~7 months storage, but increase significantly after 7~10 months storage. The correlations of different physiological factors are not significant. 4. The morphological characters of cones and seeds of four populations exist significant differences. The germination of Cupressus chenggiana seeds has no significant geographical variation. The geographical variation of Cupressus chenggiana populations can be ascribed to the population characters, climate and environment. 5. In the course of artificial propagation of Cupressus chenggiana, it is favored that the germination temperature of newly collected seeds is between 15℃ and 25℃, while the optimum temperature is 25℃. After the short storage ranged from 4 months to 10 months, it is favored that the germination temperature is between 10℃ and 25℃, while the optimum temperature is ranged from 15℃ to 20℃. The field sowing optimum time is between April and June, and the interval drought and fallrain fluctuation between July and September may be one of the reasons that restrict natural regeneration of Cupressus chenggiana. In the short storage, seeds can be stored in the condition of room temperature.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

繁殖更新是植物生活史的重要阶段,在退化生态系统中,植物繁殖更新能力往往较差,是植被恢复的限制环节,因而也成为恢复研究重点和核心。本研究选择岷江干旱河谷广泛分布的三种蔷薇:多苞蔷薇(R. multibracteata)、黄蔷薇(R. hugonis)和川滇蔷薇(R. soulieana)为研究对象,通过野外调查,在查明其生长、繁殖更新状况的基础上,采用控制和模拟实验,对种子和幼苗阶段进行了深入研究,综合分析更新潜力,并提出相对应的促进更新和植被恢复措施。主要结论如下: 1)三种蔷薇在岷江干旱河谷广泛分布,生长和繁殖状况良好,结实量大。各生长指标:株高、基径和冠幅,繁殖指标:结实数量、重量和单果重量都具有显著的空间差异性。基径对多苞蔷薇结实量影响最大;而冠幅对黄蔷薇结实量影响最大。海拔和纬度是对蔷薇生长和繁殖影响最大的环境因素,随着海拔和纬度的升高,植株生长更高大,结实量增加;坡度和坡向对其生长和繁殖也有一定影响,随着坡度 和坡向增加,蔷薇生长和结实受到抑制。 2)三种蔷薇在岷江干旱河谷更新现状不佳, 但更新潜力大。活力种子比率低,动物取食以及两年生幼苗的大量死亡是蔷薇更新的主要限制因素。多苞蔷薇和黄蔷薇的结实率低,川滇蔷薇较高。三种蔷薇种子产量大,但种子质量较差,更新具有充足的种源。三种蔷薇都能形成持久种子库,种子库中种子总量大,但有效种子少,黄蔷薇被动物啃食的比例很高,多苞蔷薇和川滇蔷薇也有一部分种子受到动物破坏。三种蔷薇幼苗库组成特征表现为,当年生幼苗所占比例很高,年龄较大幼苗所占比例小。 3)三种蔷薇都具有不同程度休眠,未经处理种子的发芽率极低。黄蔷薇休眠程度最深,为深度生理休眠;多苞蔷薇为中度生理休眠;川滇蔷薇为非深度生理休眠。三种蔷薇种子在形态上发育成熟,种皮具有透水性。蔷薇果果肉和瘦果中含有抑制物质,其浸泡液抑制了油菜种子萌发,果肉抑制作用更强,果肉和瘦果浸泡液的抑制程度分别为:川滇蔷薇>黄蔷薇>多苞蔷薇。切割和硫酸腐蚀提高了川滇蔷薇种子的发芽能力,而对多苞蔷薇和黄蔷薇没有影响。完全去除瘦果果皮和种皮提高了多苞蔷薇种子发芽率,但对黄蔷薇没有影响。赤霉素和烟水对蔷薇种子萌发没有促进作用。三种蔷薇打破休眠所需低温层积时间分别为:黄蔷薇>多苞蔷薇>川滇蔷薇。对于多苞蔷薇和川滇蔷薇,层积前对种子进行硫酸腐蚀或暖温层积能缩短低温层积时间,提高发芽率。对于多苞蔷薇,变温层积中暖温层积和低温层积具有一定的负补性,即延长暖温层积可以缩短种子萌发对低温层积的需要。 4)多苞蔷薇种子形态特征和种子休眠与萌发在不同海拔梯度间存在较大差异。种子采集时间、采集季节和干藏影响多苞蔷薇和川滇蔷薇的种子休眠。多苞蔷薇果实大小、种子大小和千粒重、种皮厚度随海拔升高而增加,而种子饱满率和活力随海拔升高而降低,种子休眠程度也随海拔升高而增加。种皮厚度与种子大小、千粒重成正相关关系,硫酸腐蚀后的种子经过不同时间的低温层积后,种子发芽率与种皮厚度、种子大小、千粒重、海拔成正相关关系。2006 年采集川滇蔷薇和多苞蔷薇种子休眠程度较2005 年低。种子休眠随种子年龄增加而减弱。高温和干旱能减轻多苞蔷薇和川滇蔷薇种子休眠。 5)三种蔷薇的生长和生物量积累在干旱胁迫条件下受到抑制,而生物量分配、叶片形态特征和水分利用特征等都发生了变化。三种蔷薇的根、茎、叶各器官生物量以及总生物量等在干旱胁迫下明显减小,叶片脱落数量增加。在干旱胁迫条件下,较多的生物量分配到地下部分,从而这使R/S 明显增加。比叶面积(SLA)和冠层面积比(LAR)对干旱胁迫的反应不敏感,仅有部分物种在干旱胁迫条件下发生了变化,并且其变化特点在不同年龄幼苗之间有一定差异。干旱胁迫对WUE 的影响在不同物种间存在差异。多苞蔷薇和黄蔷薇的WUE 随着干旱胁迫的增加而增大, 而川滇蔷薇的WUE 则随干旱胁迫增加而减小。在干旱胁迫条件下,多苞蔷薇和黄蔷薇叶片脱落量和生物量减小幅度较川滇蔷薇大,表明其抗旱能力较强。在干旱胁迫条件,三种蔷薇两年生幼苗的生物量减小幅度较当年生幼苗小,表明两年生幼苗的抗旱能力更强。 6)两种植被恢复措施中,幼苗移栽比播种具有更好的植被恢复效果。播种后,蔷薇种子的发芽率较高,但出苗率都很低,即使出苗,幼苗也几乎在一月内全部死亡。 三种微生境条件下(灌木、半灌木和裸地),种子出苗和幼苗成活没有差异。移栽幼苗总体死亡率都比较低,小于20%。特别是两年生幼苗死亡率更低,小于2%。移栽后的幼苗生长状况良好,在整个生长季中,各生长指标不断增加。生境对幼苗的存活率没有显著影响,但对于幼苗的生长和生物量积累有一定影响,裸地更有利于幼苗生长和生物量积累。与当年生幼苗相比,两年生幼苗具有更高的成活率。总之,三种蔷薇在干旱河谷分布广泛、生长繁殖状况良好,结实量大,具有丰富种源,繁殖更新潜力大,但繁殖更新状况不佳;种子散布后动物对种子的取食、种子的深度休眠过程、种子出苗以及当年生幼苗的存活和定居是更新的主要限制环节。水分是影响结实、种子休眠解除和萌发,幼苗存活和定居的最主要的限制因素。在植被恢复中,应在种子成熟季节大量采集种子,在室内打破休眠后进行人工播种,培育两年生幼苗,通过幼苗移栽方式进行植被恢复。川滇蔷薇应栽种在相对湿润的过渡区,而多苞蔷薇和黄蔷薇可以应用于核心区植被恢复。 Regeneration is an important phase in plant life cycle. It has been a key component of ecological restoration in degradation ecosystem in which plants commonly has poor regeneration. In this paper, we investigated the natural growth, propagation and regeneration status of native three rose species, Rosa multibracteata, R. hugonis and R. soulieana, and analysis the limitation in seed germination and seedling establishment stages. Advice on facilitating the use of these plants in restoration based on the results has been proposed. The results were as follows: 1) Three rose plants widely distributed in the dry valley of the Minjiang River, and made a good performance in growth and propagation. There were significant spatial differences in each growth parameter, such as ramet height, basal diameter, crown diameter and propagation parameters including hip number of a clump, hip mass of a clump and a hip mass. Basa diameter was the most important growth parameter influencing fruit number for R. multibracteata and crown diameter was for R. hugoni. Altitude and latitude had the greatest effect on the growth and propagation of rose plants among environmental conditions. Each parameter of growth and propagation increased with the increase of altitude and latitude. In addition, the increase of slope and aspect limited the growth and propagation. 2) Three rose plants had poor natural regeneration, but great regeneration potential. Low seed viability, predation and higher mortality of current year old seedlings were the limitation in regeneration. R. multibracteata and R. hugonis had higher fruiting rates than R. souliean. All three plants produced a great number of seeds, while their viability was poor. Three rose plants had persistent seed banks, with high total seed number but very low viable seed density. Predation was most severe in R. hugonis, and it also existed to some degree in R. multibracteata and R. soulieana. The seedling age-structure was characteristic of current-year seedlings predominating and few older seedlings were observed. 3) Three rose seeds were dormant and untreated seeds germinated with very low germination percentages. The rose seeds had morphological mature embryos, and achenes were permeable. Some inhabit substances existed in hips and achenes for the extracts of hips and achenes inhibited germination of Brassica campestris. The inhibition effect of the extracts of three rose hip and achenes was R. soulieana>R. hugonis>R. multibracteata. Mechanical and H2SO4 scarification increased R. soulieana germination but had no effect on germination of R. hugonis and R. multibracteata seeds. Full removal of pericarp and testa improved the germination of R. multibracteata but did not affect R. hugonis germination. GA3 and smoke water had no positive effect on rose seed germination. The periods of cold stratification required to released seed dormancy was R. hugonis > R. soulieana >R. multibracteata. H2SO4 scarification and warm stratification shortened cold stratification to release dormancy for R. soulieana and R. multibracteata. Warm stratification had complementary effect for cold stratification, i.e. the longer warm stratification seeds received, the shorter cold stratification were required to obtain the same germination percentage. Three rose seeds had different kinds of dormancy; R. hugonis has deep physiological dormancy, R. multibracteata with intermediate physiological dormancy and R. souliean non-deep physiological dormancy. 4)The seeds traits and dormancy of R. multibracteata showed significant difference across altitudes. Year and season of seed collection had significant effect on seed dormancy for both R. souliean and R. multibracteata. Hip size, seed size, seed weight, seed coat thickness and seed dormancy level increased with the increase of the altitude. There were positive relations between seed coat thickness with seed size and seed weight. Germination percentage of seeds treated with H2SO4 scarification following different periods of cold stratification showed positive relation with seed coat thickness, seed size, seed weight and altitude. Seeds of R. souliean and R. multibracteata collected in 2006 had low dormancy level than those collected in 2005. Seed dormancy decreased with increasing seeds age. High temperature and drought were associated with low dormancy level. 5) Seedling growth, the total dry mass and their components of seedlings were reduced, while leaf senescence accelerated under drought stress. More biomass allocation to root system resulted in higher R/S ratio under drought. Water-use efficiency (WUE) of R. multibracteata and R. hugonis increased, while it declined for R. soulieana under drought stress. R. soulieana seedlings had poor drought-resistance capacity it had more senescent leaves, and its reduction of biomass was stronger than two other rose plants under drought. The reduction degree of one year old seedlings under drought stress was slighter than that of current year seedlings. Therefore, one year old seedling was more drought-resistent compared to current year seedlings. 6)Planting seedlings may have better effect in comparison with direct seeding. Most seeds germinated after seeding, but seedling emergence was very low. More than 80 % seedlings from direct seeding died within a months after emergence. Seedling emergence and survival rate did not show difference among microhabitats. Mortality rates of seedlings artificially planted in microhabitats were general lower than 20 %, and the mortality rate of one year old seedlings was lower than 2 %. Each grow parameter including plant height, leaf number and branch number continually increased after planting. Microhabitat type had effect on the growth parameter and biomass production, but it did not influence the seedling survival. Bare land tended to facilitate seedling growth. One year old seedlings had higher survival rate than current year seedlings. In conculsion, the three rose had wide distribution in the dry valley of the Minjiang River. They produced many seeds and had tolerance to drought stress to some degree. But they had poor regeneration in habitats may be caused by predation, seed dormancy,and high mortality in current year seedlings. We recommend that rose plants should be utilized in restoration by planting two-year old seedlings in spring. A large quantity of seeds should be collected artificially in autumn, release seed dormancy in room, and then cultivate two-year old seedlings by seeding in particular container. R. soulieana seedling probably be planted in transition area, and R. multibracteata and R. hugonis can be used in core area of the dry valley of the Minjiang River.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

本文以青藏高原东部的高山草甸为研究对象,设置早融、中间及晚融三个融雪部位,采用实验室测量、野外测量、野外样方调查相结合的 方法,从个体、种群和群落的水平上比较研究了高山雪场植物在同一雪场样地中不同融雪梯度上的特征变异及适应,结果表明: 从早融到晚融的梯度上,随着融雪时间的逐渐推迟,表土日温差降低,冻融交替的强度减弱,土壤水份逐渐增加,总N、总P、总K 以及 可溶性的N、P 和pH 变化不明显,土壤有机质及可溶性的K 和Ca 逐渐降低。冻融交替强度上的差异以及土壤水分差异被认为是融雪梯度上 影响植物生长的主要原因。 从早融到晚融的梯度上,伴随着生态因子的改变,几种常见植物的个体特征也发生相应的变化。首先,物候期推迟。植物开始生长的时间 一般要推迟将近二十天,但同一种植物在不同的融雪部位上的衰老期趋于一致,这预示着在晚融部位同一植物的生长期要缩短。其次,个体生 长特性发生改变。黑褐穗苔草(Carex atrofusca subsp. minor (Boott) T.Koyama)和西北黄芪(Astragalus fenzelianus Pet.-Stib.)的个体生长(株高、单株叶数、单叶面积和地上生物量)表现为逐渐增加的趋势;斑唇马先蒿(Pedicularis longiflora Rudolph var. tubiformis (Klotz.) Tsoong)和川西小黄菊(Pyrethrum tatsienense (Bur. et Franch.) Ling ex Shih.)则表现为逐渐降低的趋势;长叶火绒草(Leontopodium longifolium Ling)在融雪梯度上的变化趋势不明显。再次,从繁殖特性来看,大卫马先蒿(Pedicularis davidii var. pentodon Tsoong)的单株花数、单花种子数、种子千粒重及种子萌发率随融雪的推迟呈现为逐渐增加的趋势;圆穗蓼(Polygonum macrophyllum D.Don)的种子(小坚果)千粒重和萌发率也表现为逐渐增加,其余繁殖特征变化不明显。 在种群层次上,几个常见物种的分布格局随着融雪的推迟都发生一定的变化,基本上表现为从早融的集群分布到中间或晚融部位的随机分布。物种间的联结性也发生较大的变化,由早融部位的总体上的正关联逐步过度到晚融部位上的总体上的负关联。特定种对间的联结性也发生较大的变化。恶劣环境条件(如剧烈的冻融交替)的影响以及对恶劣条件适应被认为是分布格局及种间联结性发生变化的主要原因。 在群落层次上,物种多样性的变化表现为单峰曲线的格局,即在中间部位多样性最高。早融部位强烈的冻融交替和晚融部位缩短的生长季是早融及晚融部位物种多样性不高的重要原因。几乎所有的只出现在一个融雪部位(雪深级别)上的物种都发生在中间融雪部位。这说明,中等的雪深更有利于许多高山植物的存活,而过浅过深的积雪都不利于植物的生存。另外,相距较近的融雪梯度之间的物种相似性较大,而相距较远的梯度之间物种的替代率较高,物种的相似性较小。在群落的生物量方面,地上生物量随融雪的推迟而升高,地下生物量随融雪的推迟而下降,地上与地下生物量之总和随着融雪的推迟而下降,地下生物量与地上生物量之比随着融雪的推迟而下降。早融部位的地上生物量主要集中于地上0-10cm 的范围内,表明在早融部位植物地上部分有变矮的趋势;早融部位的地下生物量在土壤各深度分布相对较均一,而晚融部位地下生物量则主要集中于地下0-10cm 的范围内。生物量的变化趋势主要与雪场中各部位的土壤水分含量及地表日温度差异有关,是植物适应特定环境的结果。 To detect the plants’ responses to snow-cover gradients in an alpine meadow of eastern Tibetan plateau, laboratory method and field sample plot method were employed, and three gradeients (early-, medium and late-melting)were established in a natural snowbed. The measurements were carried out for two years and was done on three levels——individual, population and community. The results are shown as follows : From early- to late-melting gradients, daily ground temperature difference between day and night decreased, amplitude of freeze-thaw alternation weakened, soil organic matter contents and soluble K and Ca decreased, while soil water content increased. Total N, total P, total K,pH soluble N and soluble P kept constant from early- to late-melting portions. Among these factors, the changes of intense freeze-thaw alternation and soil water contents were considered as main factors affecting plants’ growth. From early- to late-melting portions, all phenological phases postponed, e.g. phase of plant emergence postponed almost twenty days. However, the same species’ individuals at different portions withered in step, which implied that the individuals at late-melting portion possessed shorter growing season length. Along the same gradient, both Carex atrofusca subsp. minor (Boott) T. Koyama and Astragalus fenzelianus Pet.-Stib. increased their individual growth, whereas Pedicularis longiflora Rudolph var. tubiformis (Klotz.) Tsoong and Pyrethrum tatsienense (Bur. et Franch.) Ling ex Shih. decreased their individual growth. Unlike the four plants mentioned above, Leontopodium longifolium L. did not show any evident change. As to reproductive charateristics, the flowers per individual, the number of seeds per flower, the thousand seed weight and the seed germination rate of Pedicularis davidii var. pentodon showed an increasing trend; and Polygonum macrophyllum D.Don also increased its thousand seed weight and seed germination rate along the same gradient. However, the other reproductive charateristics of Polygonum macrophyllum D.Don did not change significantly. At population level, the distribution pattern of several selected species changed from cluster pattern to random pattern as the snowmelt postponed. Overall association among the species changed from positive to negative along the same gradient. Further, interspecific association also changed evidently. Adverse circumstances such as intense freeze-thaw alternation were considered as primary factors resulting in changes of population distribution pattern and interspecific association. At the level of community, species diversity showed a pattern of a unimodal trend, i.e. the highest diversity occurred at medium snow depth,perhaps because of intense freeze-thaw alternation at early-melting portions and the shortest growing season at late-melting portions. Almost all species that only appeared at one snowmelt portion occurred at medium portion, indicating that medium snow depth was more suitable for many species’ survival. Species replacement from one snowmelt portion to its neighboring portion seldom took place. However, while distance between two portions became farther, species replacement between the two portions occurred more frequently. As for biomass, aboveground biomass increased from early- to late-melting portions, whereas belowground biomass, total biomass and the ratio of belowground to aboveground all decreased along the same snow gradient. A majority of aboveground biomass distributed in a height range of 0-10 cm, suggesting that height of plants inhabiting early-melting portion be shorter compared with other portions. In addition, belowground biomass at early-melting portion was evenly distributed at different soil depth in comparison with aboveground biomass, whereas belowground biomass at late-melting portion concentrated 0-10cm soil layer below ground. The changing trend of biomass was also related to two factors. One was soil water content, and the other topsoil temperature difference between day and night.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It has been reported recently that single carbon nanotubes were attached to AFM tips to act as nanotweezers. In order to investigate its stability, a vertical single-walled carbon nanotube (SWCNT) under its own weight is studied in this paper. The lower end of the carbon nanotube is clamped. Firstly the governing dimensionless numbers are derived by dimensional analysis. Then the theoretical analysis based on an elastic column model is carried out. Two ratios, I.e., the ratio of half wall thickness to radius (t=R) and the ratio of gravity to elastic resilience ($\rho$gR=E), and their influences on the ratio of critical length to radius are discussed. It is found that the relationship between the critical ratio of altitude to radius and ratio of half thickness to radius is approximately linear. As the dimensionless number $\rho$gR=E increases, the compressive force per unit length (weight) becomes larger, thus critical ratio of altitude to radius must become smaller to maintain stability. At last the critical length of SWCNT is calculated. The results of this paper will be helpful for the stability design of nanotweezers-like nanostructures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Semi-weight function method is developed to solve the plane problem of two bonded dissimilar materials containing a crack along the bond. From equilibrium equation, stress and strain relationship, conditions of continuity across interface and free crack surface, the stress and displacement fields were obtained. The eigenvalue of these fields is lambda. Semi-weight functions were obtained as virtual displacement and stress fields with eigenvalue-lambda. Integral expression of fracture parameters, K-I and K-II, were obtained from reciprocal work theorem with semi-weight functions and approximate displacement and stress values on any integral path around crack tip. The calculation results of applications show that the semi-weight function method is a simple, convenient and high precision calculation method.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The tribological properties of the high-strength and high-modulus ultrahigh molecular weight polyethylene (UHMWPE) film and the UHMWPE composites reinforced by multiwalled carbon nanotubes (MWCNT/UHMWPE) were investigated using a nanoindenter and atomic force microscope (AFM). The MWCNT/UHMWPE composites films exhibited not only high wear resistance but also a low friction coefficient compared to the pure UHMWPE films. We attribute the high wear resistance to the formation of the new microstructure in the composites due to the addition of MWCNTs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The recent progress of submerged floating tunnel (SFT) investigation and SFT prototype (SFTP) project in Qiandao Lake (Zhejiang Province, P.R. China) is the background of this research. Structural damping effect is brought into present computation model in terms of Rayleigh damping. Based on the FEM computational results of SFTPs as a function of buoyancy-weight ratio (BWR) under hydrodynamic loads, the effect of BWR on the dynamic response of SFT is illustrated. In addition, human comfort index is adopted to discuss the comfort status of the SFTP.