27 resultados para reverse transcription-polymerase chain reaction


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A rapid, sensitive and highly specific detection method for grass carp hemorrhagic virus (GCHV) based on a reverse transcription-polymerase chain reaction (RT-PCR) has been developed. Two pairs of PCR primers were synthesized according to the cloned cDNA sequences of the GCHV-861 strain. For each primer combination, only one specific major product was obtained when amplification was performed by using the genomic dsRNA of GCHV-861 strain. The lengths of their expected products were 320 and 223 bp, respectively. No products were obtained when nucleic acids other than GCHV-861 genomic RNA were used as RT-PCR templates. To assess the sensitivity of the method, dilutions of purified GCHV-861 dsRNA total genome (0.01 pg up to 1000 pg) were amplified and quantities of as little as 0.1 pg of purified dsRNA were detectable when the amplification product was analyzed by 1.5% agarose gel electrophoresis. This technique could detect GCHV-861 not only in infected cell culture fluids, but also in infected grass carp Ctenopharyngodon idellus and rare minnow Gobiocypris rarus with or without hemorrhagic symptoms. The results show that the RT-PCR amplification method is useful for the direct detection of GCHV.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective: To investigate the association of complement C4 null genes (C4QO, including C4AQO and C4BQO) and C2 gene with systemic lupus erythematosus (SLE) in southwest Han Chinese; 136 patients with SLE and 174 matched controls were genotyped. Methods: C4 null genes were determined by a polymerase chain reaction (PCR) procedure with sequence specific primers (PCR-SSP). The 2 bp insertion in exon 29, which was previously identified in non-Chinese populations and caused defective C4A genes, was directly typed by sequencing the whole exon 29 using exon specific primers. The exon 6 of complement C2 was also sequenced in both the patients and controls. Results: The frequency of homozygous C4AQO allele was 12.5% (17/136) in patients with SLE compared with 1.1% (2/174) in controls (p<0.001, odds ratio (OR)=12.286, 95% confidence interval (95% CI) 2.786 to 54.170). There was no significant difference for homozygous C4BQO allele between patients with SLE and controls (p=0.699). Patients with the C4AQO gene had an increased risk of acquiring renal disorder, serositis, and anti-dsDNA antibodies compared with those without C4AQO (for renal disorder, p=0.018, OR=8.951, 95% Cl 1.132 to 70.804; for serositis, p=0.011, OR 4.891, 95% CI 1.574 to 15.198; for anti-dsDNA, p=0.004, OR 7.630, 95%Cl 1.636 to 35.584). None of the patients or controls had the 2 bp insertion in exon 29 of the C4 gene. The type I C2 deficiency was not detected in the 3 10 samples. Conclusion: It is suggested that deficiency of C4A (not due to a 2 bp insertion in exon 29), but not C4B or C2, may be a risk factor for acquiring SLE in south west Han Chinese; this results in increased risk of renal disorder, serositis, and anti-dsDNA antibodies in patients with SLE. Racial differences seem to be relevant in susceptibility to SLE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Double-stranded RNA (dsRNA) has been shown to be a useful tool for silencing genes in zebrafish (Danio rerio), while the blocking specificity of dsRNA is still of major concern for application. It was reported that siRNA (small interfering RNA) prepared by endoribonuclease digestion (esiRNA) could efficiently silence endogenous gene expression in mammalian embryos. To test whether esiRNA could work in zebrafish, we utilized Escherichia coli RNaseIII to digest dsRNA of zebrafish no tail (ntl), a mesoderm determinant in zebrafish and found that esi-ntl could lead to developmental defects, however, the effective dose was so close to the toxic dose that esi-ntl often led to non-specific developmental defects. Consequently, we utilized SP6 RNA polymerase to produce si-ntl, siRNA designed against ntl, by in vitro transcription. By injecting in vitro synthesized si-ntl into zebrafish zygotes, we obtained specific phenocopies of reported mutants of ntl. We achieved up to a 59%no tail phenotype when the injection concentration was as high as 4 mu g/mu L. Quantitative reverse transcription-polymerase chain reaction (RT-PCR) and whole-mount in situ hybridization analysis showed that si-ntl could largely and specifically reduce mRNA levels of the ntl gene. As a result, our data indicate that esiRNA is unable to cause specific developmental defects in zebrafish, while siRNA should be an alternative for downregulation of specific gene expression in zebrafish in cases where RNAi techniques are applied to zebrafish reverse genetics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a novel method for performing polymerase chain reaction (PCR) amplification by using spiral channel fabricated on copper where a transparent polytetrafluoroethylene ( PTFE) capillary tube was embedded. The channel with 25 PCR cycles was gradually developed in a spiral manner from inner to outer. The durations of PCR mixture at the denaturation, annealing and extension zones were gradually lengthened at a given flow rate, which may benefit continuous-flow PCR amplification as the synthesis ability of the Taq polymerase enzyme usually weakens with PCR time. Successful continuous-flow amplification of DNA fragments has been demonstrated. The PCR products of 249, 500 and 982 bp fragments could be obviously observed when the flow rates of PCR mixture were 7.5, 7.5 and 3.0 mm s(-1), respectively, and the required amplification times were about 25, 25, and 62 min, respectively. Besides, the successful segmented-flow PCR of three samples ( 249, 500 and 982 bp) has also been reported, which demonstrates the present continuous-flow PCR microfluidics can be developed for high-throughput genetic analysis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We describe a new molecular approach to analyzing the genetic diversity of complex microbial populations. This technique is based on the separation of polymerase chain reaction-amplified fragments of genes coding for 16S rRNA, all the same length, by denaturing gradient gel electrophoresis (DGGE). DGGE analysis of different microbial communities demonstrated the presence of up to 10 distinguishable bands in the separation pattern, which were most likely derived from as many different species constituting these populations, and thereby generated a DGGE profile of the populations. We showed that it is possible to identify constituents which represent only 1% of the total population. With an oligonucleotide probe specific for the V3 region of 16S rRNA of sulfate-reducing bacteria, particular DNA fragments from some of the microbial populations could be identified by hybridization analysis. Analysis of the genomic DNA from a bacterial biofilm grown under aerobic conditions suggests that sulfate-reducing bacteria, despite their anaerobicity, were present in this environment. The results we obtained demonstrate that this technique will contribute to our understanding of the genetic diversity of uncharacterized microbial populations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Using bioinformatics approach, the genome locus containing interleukin (IL)-22, IL-26, and interferon gamma (IFN-gamma) genes has been identified in the amphibian, Xenopus tropicalis. Like that in other vertebrates such as fish, birds, and mammals, the Xenopus IL-22, IL-26, and IFN-gamma are clustered in the same chromosome and the adjacent genes are conserved. The genomic structures of the Xenopus IL-22, IL-26, and IFN-gamma gene were identical to that of their mammalian counterparts. The Xenopus IL-22 and IL-26 genes contained five exons and four introns while the Xenopus IFN-gamma gene consisted of four exons and three introns. The Xenopus IL-22, IL-26, and IFN-gamma share 14.1-41.6%, 14.6-31.2%, and 23.7-36.5% identity to their counterparts in other species, respectively. Reverse-transcription polymerase chain reaction (PCR) and real-time quantitative PCR analyses revealed that the expression of IL-22, IL-26, and IFN-gamma genes was significantly upregulated after simulation with bacterial polyliposaccharide and/or synthetic double-stranded poly(I:C), suggesting these cytokines like those in other vertebrates play an important role in regulating immune response in Xenopus.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The ability to utilize the RNA interference (RNAi) machinery for silencing target-gene expression has created a lot of excitement in the research community. In the present study, we used a cytomegalovirus (CMV) promoter-driven DNA template approach to induce short hairpin RNA (shRNA) triggered RNAi to block exogenous Enhanced Green Fluorescent Protein (EGFP) and endogenous No Tail (NTL) gene expressions. We constructed three plasmids, pCMV-EGFP-CMV-shGFP-SV40, pCMV-EGFP-CMV-shNTL-SV40, and pCMV-EGFP-CMV-shScrambled-SV40, each containing a CMV promoter driving an EGFP reporter cDNA and DNA coding for one shRNA under the control of another CMV promoter. The three shRNA-generating plasmids and pCMV-EGFP control plasmid were introduced into zebrafish embryos by microinjection. Samples were collected at 48 h after injection. Results were evaluated by phenotype observation and real-time fluorescent quantitative reverse-transcription polymerase chain reaction (Q-PCR). The shGFP-generating plasmid significantly inhibited the EGFP expression viewed under fluorescent microscope and reduced by 70.05 +/- 1.26% of exogenous EGFP gene mRNA levels compared with controls by Q-PCR. The shRNA targeting endogenous NTL gene resulted in obvious NTL phenotype of 30 +/- 4% and decreased the level of their corresponding mRNAs up to 54.52 +/- 2.05% compared with nontargeting control shRNA. These data proved the feasibility of the CMV promoter-driven shRNA expression technique to be used to inhibit exogenous and endogenous gene expressions in zebrafish in vivo.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tumor necrosis factor receptor-associated factor 2 (TRAF2) is a crucial component of almost the entire tumor necrosis factor receptor superfamily signaling pathway. In the present study, a TRAF2 gene has been cloned from grass carp (Ctenopharyngodon idella) by reverse transcription-polymerase chain reaction and rapid amplification of cDNA ends. The full-length cDNA is 3162 bp, including a 60 bp 5' untranslated region (UTR), a 1611 bp open reading frame, and a 1491 bp 3' UTR. The polyadenylation signal (AATAAA) and the mRNA instability motifs (ATTTTA, ATTTA) were followed by a poly(A) tail in the 3' UTR. No signal peptide or transmembrane region has been found in the putative amino acids of grass carp TRAF2 (gcTRAF2). Phylogenetic tree analysis clearly showed that gcTRAF2 is nearest to the TRAF2 gene of goldfish. The identity of gcTRAF2 with its homologs in other vertebrates ranges from 56% to 97%. It is characterized by one RING-type signature at the N-terminus, one zinc finger in the middle part, and one conserved TRAF domain consisting of a C-proximal (TRAF-C) subdomain and a N-proximal (TRAF-N) subdomain. The identity of TRAF-C among all TRAF2 homologs in vertebrates varies from 78% to 97%, whereas the identity of TRAF-N ranges from 56% to 100%. The recombinant gcTRAF2 has been expressed in Escherichia coli using pET-32a expression vector. The rabbit anti-gcTRAF2 polyclonal antibody was obtained. The expression of gcTRAF2 in different organs was examined by real-time quantitative polymerase chain reaction and Western blot analysis. It was widely distributed in heart, head kidney, thymus, brain, gill, liver, spleen, and trunk kidney. This is the first report of a TRAF2 homolog molecule in fish.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The complete genome of spring viraemia of carp virus (SVCV) strain A-1 isolated from cultured common carp (Cyprinus carpio) in China was sequenced and characterized. Reverse transcription-polymerase chain reaction (RT-PCR) derived clones were constructed and the DNA was sequenced. It showed that the entire genome of SVCV A-1 consists of 11,100 nucleotide base pairs, the predicted size of the viral RNA of rhabdoviruses. However, the additional insertions in bp 4633-4676 and bp 4684-4724 of SVCV A-1 were different from the other two published SVCV complete genomes. Five open reading frames (ORFs) of SVCV A-1 were identified and further confirmed by RT-PCR and DNA sequencing of their respective RT-PCR products. The 5 structural proteins encoded by the viral RNA were ordered 3'-N-P-M-G-L-5'. This is the first report of a complete genome sequence of SVCV isolated from cultured carp in China. Phylogenetic analysis indicates that SVCV A-1 is closely related to the members of the genus Vesiculovirus, family Rhabdoviridae.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The cDNA of growth hormone receptor (GHR) was cloned from the liver of 2-year common carp (Cyprinus carpio L.) by reverse transcription-polymerase chain reaction (RT-PCR) and rapid amplification of cDNA end (RACE). Its open reading frame (ORF) of 1806 nucleotides is translated into a putative peptide of 602 amino acids, including an extracellular ligand-binding domain of 244 amino acids (aa), a single transmembrane domain of 24 aa and an intracellular signal-transduction domain of 334 aa. Sequence analysis indicated that common carp GHR is highly homologous to goldfish (Carassius auratus) GHR at both gene and protein levels. Using a pair of gene-specific primers, a GHR fragment was amplified from the cDNA of 2-year common carp, a 224 bp product was identified in liver and a 321 bp product in other tissues. The sequencing of the products and the partial genomic DNA indicated that the difference in product size was the result of a 97 bp intron that alternatively spliced. In addition, the 321 bp fragment could be amplified from all the tissues of 4-month common carp including liver, demonstrating the occurrence of the alternative splicing of this intron during the development of common carp. Moreover, a semi-quantitative RT-PCR was performed to analyze the expression level of GHR in tissues of 2-year common carp and 4-month common carp. The result revealed that in the tissues of gill, thymus and brain, the expression level of GHR in 2-year common carp was significantly tower than that of 4-month common carp.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Lunatic fringe (Lfng), one modulator of Notch signaling, plays an essential part in demarcation of tissues boundaries during animal early development, especially somitogenesis. To characterize the promoter of zebrafish 1fng and generate somite-specific transgenic zebrafish, we isolated the upstream regulatory region of zebrafish 1fng by blast search at the Ensembl genome database (http://www. ensembl.org) and analyzed the promoter activity using green fluorescent protein (GFP) as a reporter. Promoter activity assay in zebrafish shows that the 0.2-kb fragment containing GC-box, CAAT-box, and TATA-box can direct tissue-specific GFP expression, while the 0.4-kb and 1.2-kb fragments with further upstream sequence included drive GFP expression more efficiently. We produced 1fngEGFP-transgenic founders showing somite-specific expression of GFP and consequently generated a hemizygous 1fngEGFP-transgenic line. The eggs from 1fngEGFP-transgenic female zebrafish show strong GFP expression, which is consistent to the reverse-transcription polymerase chain reaction PCR (RT-PCR) detection of 1fng transcripts in the fertilized eggs. This reveals that zebrafish 1fng is a maternal factor existing in matured eggs, suggesting that fish somitogcnesis may be influenced by maternal factors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Gonadotropin-releasing hormone (GnRH) is a conservative neurodecapeptide family, which plays a crucial role in regulating the gonad development and in controlling the final sexual maturation in vertebrate. Two differing cGnRH-II cDNAs of common carp, namely cGnRH-II cDNA1 and cDNA2, were firstly cloned from the brain by rapid amplification of cDNA end (RACE) and reverse transcription- polymerase chain reaction (RT-PCR). The length of cGnRH-II cDNA1 and cDNA2 was 622 and 578 base pairs (bp), respectively. The cGnRH-II precursors encoded by two cDNAs consisted of 86 amino acids, including a signal peptide, cGnRH-II decapeptide and a GnRH-associated peptide (GAP) linked by a Gly-Lys-Arg proteolytic site. The results of intron trapping and Southern blot showed that two differing cGnRH-II genes in common carp genome were further identified, and that two genes might exist as a single copy. The multi-gene coding of common carp cGnRH-II gene offered novel evidence for gene duplication hypothesis. Using semi-quantitative RT-PCR, expression and relative expression levels of cGnRH-II genes were detected in five dissected brain regions, pituitary and gonad of common carp. With the exception of no mRNA2 in ovary, two cGnRH-II genes could be expressed in all the detected tissues. However, expression levels showed an apparent difference in different brain regions, pituitary and gonad. According to the expression characterization of cGnRH-II genes in brain areas, it was presumed that cGnRH-II might mainly work as the neurotransmitter and neuromodulator and also operate in the regulation for the GnRH releasing. Then, the expression of cGnRH-II genes in pituitary and gonad suggested that cGnRH-II might act as the autocrine or paracrine regulator.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A rapid, sensitive and highly specific detection method for Aquareovirus based on reverse-transcription polymerase chain reaction (RT-PCR) was developed. Based on multiple sequence alignment of the cloned sequences of a local isolates, the Threadfin reovirus (TFV) and Guppy reovirus (GPV) with Grass carp reovirus (GCRV), a pair of degenerate primers was selected carefully and synthesized. Using this primer combination, only one specific product, approximately 450 bp in length was obtained when RT-PCR was carried out using the genomic double-stranded RNA (dsRNA) of TFV, GPV and GCRV. Similar results were also obtained when Chum salmon reovirus (CSRV) and Striped bass reovirus (SBRV) dsRNA were used as templates. No products were observed when nucleic acids other than the dsRNA of the aquareoviruses described above were used as RT-PCR templates. This technique could detect not only TFV but also GPV and GCRV in low titer virus-infected cell cultured cells. Furthermore, this method has also been shown to be able to diagnose GPV-infected guppy (Poecilia reticulata) that exhibit clinical symptoms as well as GPV-carrier guppy. Collectively, these results showed that the RT-PCR amplification method using specific degenerate primers described below is very useful for rapid and accurate detection of a variety of aquareovirus strains isolated from different host species and origin. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effects of estradiol (E(2)) on growth hormone (GH) production was investigated in gonad-intact female goldfish. It was first necessary to generate a specific antibody for use in immunocytochemistry, Western, and dot-blot analyses of GH production. To accomplish this, grass carp GH (gcGH) cDNA was cloned by the reverse transcription polymerase chain reaction (RT-PCR) and expressed in Echerichia coli and a specific polyclonal antibody to recombinant gcGH was generated in the rabbit. In Western blot, the anti-gcGH antibody specifically immunoreacted with recombinant gcGH, purified natural common carp GH, and with a single 21.5-kDa GH form from pituitary extracts of grass carp, common carp, goldfish, and zebrafish but not salmon, trout, or tilapia. Intraperitoneal injection of the recombinant gcGH enhanced the growth rates of juvenile common carp demonstrating biological activity of this GH preparation. Electron microscopic studies showed that the anti-gcGH-I antibody specifically reacted with GH localized in the secretory granules of the goldfish somatotroph. Using anti-gcGH-I in a dot-blot assay, it was found that in vivo implantation of solid silastic pellets containing E(2) (100 mu g/g body weight for 5 days) increased pituitary GH content by 150% in female goldfish. In a second, independent study employing a previously characterized anticommon carp GH antibody for radioimmunoassay, it was found that E(2) increased pituitary GH content by 170% and serum GH levels by approximately 350%. The E(2)-induced hypersecretion of GH and increase in pituitary GH levels was not associated with changes in steady-state pituitary GH mRNA levels, suggesting that this sex steroid may enhance GH synthesis at the posttranscriptional or translational level. Previous observations indicate that GH can stimulate ovarian E(2) production. The present results show that E(2) can in turn stimulate GH production, indicating the existence of a novel pituitary GH-ovarian feedback system in goldfish. (C) 1997 Academic Press.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have developed a new experimental system based on a microfluidic chip to determine severe acute respiratory syndrome coronavirus (SARS-Cov). The system includes a laser-induced fluorescence microfluidic chip analyzer, a glass microchip for both polymerase chain reaction (PCR) and capillary electrophoresis, a chip thermal cycler based on dual Peltier thermoelectric elements, a reverse transcription-polymerase chain reaction (RT-PCR) SARS diagnostic kit, and a DNA electrophoretic sizing kit. The system allows efficient cDNA amplification of SARS-CoV followed by electrophoretic sizing and detection on the same chip. To enhance the reliability of RT-PCR on SARS-CoV detection, duplex PCR was developed on the microchip. The assay was carried out on a home-made microfluidic chip system. The positive and the negative control were cDNA fragments of SARS-CoV and parainfluenza virus, respectively. The test results showed that 17 positive samples were obtained among 18 samples of nasopharyngeal swabs from clinically diagnosed SARS patients. However, 12 positive results from the same 18 samples were obtained by the conventional RT-PCR with agarose gel electrophoresis detection. The SARS virus species can be analyzed with high positive rate and rapidity on the microfluidic chip system.