34 resultados para physical parameters


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We studied the dependence of thermodynamic variables in a sonoluminescing ~SL! bubble on various physical factors, which include viscosity, thermal conductivity, surface tension, the equation of state of the gas inside the bubble, as well as the compressibility of the surrounding liquid. The numerical solutions show that the existence of shock waves in the SL parameter regime is very sensitive to these factors. Furthermore, we show that even without shock waves, the reflection of continuous compressional waves at the bubble center can produce the high temperature and picosecond time scale light pulse of the SL bubble, which implies that SL may not necessarily be due to shock waves.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sensory gating is the ability of the brain to modulate its sensitivity to incoming stimuli. The N40 component of the auditory evoked potential, evaluated with the paired click paradigm, was used to probe the gating effect in rats. The physical characteris

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A material model, whose framework is parallel spring-bundles oriented in 3-D space, is proposed. Based on a discussion of the discrete schemes and optimum discretization of the solid angles, a 3-D network cell consisted of one-dimensional components is developed with its geometrical and physical parameters calibrated. It is proved that the 3-D network model is able to exactly simulate materials with arbitrary Poisson ratio from 0 to 1/2, breaking through the limit that the previous models in the literature are only suitable for materials with Poisson ratio from 0 to 1/3. A simplified model is also proposed to realize high computation accuracy within low computation cost. Examples demonstrate that the 3-D network model has particular superiority in the simulation of short-fiber reinforced composites.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Classical fracture mechanics is based on the premise that small scale features could be averaged to give a larger scale property such that the assumption of material homogeneity would hold. Involvement of the material microstructure, however, necessitates different characteristic lengths for describing different geometric features. Macroscopic parameters could not be freely exchanged with those at the microscopic scale level. Such a practice could cause misinterpretation of test data. Ambiguities arising from the lack of a more precise range of limitations for the definitions of physical parameters are discussed in connection with material length scales. Physical events overlooked between the macroscopic and microscopic scale could be the link that is needed to bridge the gap. The classical models for the creation of free surface for a liquid and solid are oversimplified. They consider only the translational motion of individual atoms. Movements of groups or clusters of molecules deserve attention. Multiscale cracking behavior also requires the distinction of material damage involving at least two different scales in a single simulation. In this connection, special attention should be given to the use of asymptotic solution in contrast to the full field solution when applying fracture criteria. The former may leave out detail features that would have otherwise been included by the latter. Illustrations are provided for predicting the crack initiation sites of piezoceramics. No definite conclusions can be drawn from the atomistic simulation models such as those used in molecular dynamics until the non-equilibrium boundary conditions can be better understood. The specification of strain rates and temperatures should be synchronized as the specimen size is reduced to microns. Many of the results obtained at the atomic scale should be first identified with those at the mesoscale before they are assumed to be connected with macroscopic observations. Hopefully, "mesofracture mechanics" could serve as the link to bring macrofracture mechanics closer to microfracture mechanics.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

By solving numerically the full set of hydrodynamic equations governing the pulsation of a bubble,we show that shock waves are often absent in a stable sonoluminescing bubble. Nevertheless, for a wide range of physical parameters, a continuous compressional wave emerges and heats up the bubble, and the resulting black-body radiations have pulse heights and widths that agree with experimental data. Shock waves, being much less robust, are not essential for stable single-bubble sonoluminescence.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Cracking of ceramics with tetragonal perovskite grain structure is known to appear at different sites and scale level. The multiscale character of damage depends on the combined effects of electromechanical coupling, prevailing physical parameters and boundary conditions. These detail features are exhibited by application of the energy density criterion with judicious use of the mode I asymptotic and full field solution in the range of r/a = 10(-4) to 10(-2) where r and a are, respectively, the distance to the crack tip and half crack length. Very close to the stationary crack tip, bifurcation is predicted resembling the dislocation emission behavior invoked in the molecular dynamics model. At the macroscopic scale, crack growth is predicted to occur straight ahead with two yield zones to the sides. A multiscale feature of crack tip damage is provided for the first time. Numerical values of the relative distances and bifurcation angles are reported for the PZT-4 ceramic subjected to different electric field to applied stress ratio and boundary conditions that consist of the specification of electric field/mechanical stress, electric displacement/mechanical strain, and mixed conditions. To be emphasized is that the multiscale character of damage in piezoceramics does not appear in general. It occurs only for specific combinations of the external and internal field parameters, elastic/piezoelectric/dielectric constants and specified boundary conditions. (C) 2002 Published by Elsevier Science Ltd.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Systematic investigations into the temporal and spatial distribution, composition and abundance of protozoa in two regions with different trophic levels in Chaohu Lake, a large, shallow and highly eutrophic freshwater lake in China, were conducted during 2002-2003. A total of 114 species of protozoa, including phytomastigophorans, zoomastigophorans, amoebae and ciliates, were identified from 120 polyurethane foam unit (PFU) samples exposed at four stations and from various types of natural substrates. Of the 114 taxa, 36 core species were found on PFU substrates and 23 of these were found on natural ones. Protozoan abundance and chemical physical parameters at nine sampling stations, four in the western lake and five in the eastern part, indicate trophic gradient changes along the lake. Seasonal variations in the species composition of major groups at littoral PFU sampling stations illustrate the effect of a severe algal bloom on the protozoan community structure. Temporal and spatial distributions of individual abundance as functions of water temperature and trophic status were revealed. This study demonstrates again that the PFU artificial substrate method samples protozoan communities more effectively than routine natural substrate methods. (c) 2005 Elsevier GmbH. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In order to realize the steady-state droplet evaporation, image feedback control system is designed based on DSP. The system has three main functions: to capture and store droplet images during the experiment; to calculate droplet geometrical and physical parameters such as volume, surface area, surface tension and evaporation velocity at a high-precision level; to keep the droplet volume constant. The DSP can drive an injection controller with the PID control to inject liquid so as to keep the droplet volume constant. The evaporation velocity of droplet can be calculated by measuring the injected volume during the evaporation. The structure of hardware and software of the control system, key processing methods such as contour fitting and experimental results are described.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

为了使机器人跟踪给定的期望轨线,提出了一种新的基于机器人运动重复性的学习控制法.在这种方法中机器人通过重复试验得到期望运动,这种控制法的优点:一是对于在期望运动附近非线性机器人动力学的近似表达式的线性时变机械系统产生期望运动的输入力矩可不由估计机器人动力学的物理参数形成;二是可以适当的选择位置、速度和加速度反馈增益矩阵,从而加快误差收敛速度;三是加入了加速度反馈,减少了速度反馈,减少了重复试验的次数.这是因为在每次试验的初始时刻不存在位置和速度误差,但存在加速度误差.另外,这种控制法的有效性通过PUMA562机器人的前三个关节的计算机仿真结果得到验证。

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Conventional 3D seismic exploration cannot meet the demand of high yield and high efficiency safe production in coal mine any more. Now it is urgent to improve the discovery degree of coal mine geological structures for coal production in China. Based on 3D3C seismic exploration data, multi-component seismic information is fully excavated. First systematic research on 3D3C seismic data interpretation of coal measure strata is carried out. Firstly, by analyzing the coal measure strata, the seismic-geologic model of coal measure strata is built. Shear wave logging is built by using regression analysis. Horizon calibration methods of PP-wave and PS-wave are studied and the multi-wave data are used together to interpret small faults. Using main amplitude analysis technology, small faults which cannot be found from PP-wave sections can be interpreted from the low frequency PS-wave sections. Thus, the purpose to applying PS-wave data to fine structure assistant interpretation is achieved. Secondly, PP- and PS-wave post-stack well constrained inversion methods of coal measure strata are studied. Joint PP- and PS-wave post-stack inversion flow is established. More attribute parameters, which are applied in fine lithology interpretation of coal measure strata, are obtained from combinations of the inversion results. Exploring the relation between rock with negative Poisson’s ratio and anisotropy, fracture development in coal seam are predicted. Petrophysical features of coal measure strata are studied, and the relations between elastic parameters and lithology, fluid and physical properties are established. Inversions of the physical parameters such as porosity, permeability and water saturation, which reflect lithology and fluid property, are obtained. Finally, the approaches of shear wave splitting and Thomsen parameters inversion, which provide new ideas for seismic anisotropy interpretation of coal measure strata, are studied to predict fracture development. The results of practical application indicate that the methods in this paper have good feasibility and applicability. They have positive significance for high yield and high efficiency safe production in coal mine.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Since physical properties and resistivity of mixed formation fluid change after polymer and water flood reservoir, transformational electric properties of water and polymer flooded zones challenges log interpretation. Conventional log interpretation methods to water flooded reservoirs cannot be employed to water and polymer flooded zones. According to difficulties in water and polymer flooded zones interpretation, we analyzed the variation of electric properties of mixed formation fluid, reservoir parameters and log correspondences, then got further understanding of the applicability of Archie Equations. As the results, we provided reservoir parameter evaluation model in water and polymer flooded zones in this paper. This research shows that micro pore structure, physical parameters and electric correspondence of reservoirs change after being flooded by water and polymer. The resistivity variation of mixed formation fluid depends mainly on affixation conductivity of polymer and salinity of formation water, which is the key to log interpretation and evaluation. Therefore, we summerized the laws of log correspondence in different polymer injection ways, developed electric discrimination model for water and polymer flooded zones, as well as charts to identify flooding conditions with resistivity and sonic logs. Further rock-electric tests and conductive mechanism analysis indicate that the resistivity increasing coefficient(I) and water saturation(Sw) are still in concordance with classical Archie Equations, which can be utilized in quantitative evaluation on water and polymer flooded reservoirs. This sets of methods greatly improved accuracy in water and polymer flooded zone evaluation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Since C.L. Hearn presented the concept of flow unit in 1984, its generation mechanisms and controlling factors have been studied in many aspects using different methods by researchers. There are some basic methods to do the research, and there are several concepts and classification standards about flow unit. Based on previous achievements and using methodologies from sedimentary geology, geophysics, seismic stratigraphy, and reservoir engineering, the author systemically studies the factors controlling flow unit, puts forward a series of methods for recognition, classification and evaluation of flow unit. The results obtained in this paper have important significance not only for understanding the flow unit, but also for revealing the distribution of remaining oil. As a case, this paper deals with the reservoir rocks in Guantao Group of Gudong Oilfield. Zhanhua Sag, Jiyang Depression in Bohaiwan Basin. Based on the study of stratigraphic, depositional and structural characteristics, the author establishes reservoir geological models, reveals the geological characteristics of oil-bearing reservoir of fluvial facies, points out the factors controlling flow unit and geological parameters for classification of flow unit. and summarizes methods and technologies for flow unit study when geological, well-logging and mathematical methods are used. It is the first attempt in literatures to evaluate reservoir by well-logging data constrained by geological conditions, then a well-logging evaluation model can be built. This kind of model is more precise than ever for calculating physical parameters in flow unit. In a well bore, there are six methods to recognize a flow unit. Among them, the activity function and intra-layer difference methods are the most effective. Along a section, the composition type of flow unit can be located according amplitude and impedance on seismic section. Slice method and other methods are used to distinguish flow unit. In order to reveal the distribution laws of flow unit in space, the author create a new method, named combination and composition of flow unit. Based on microscopic pore structure research, the classification methods of flow unit are developed. There are three types of flow unit in the reservoir of fluvial facies. They have their own lithology, petrophysics and pore structure character. Using judgement method, standard functions are built to determine the class of flow unit of fluvial facies. Combining reservoir engineering methods, the distribution laws of remaining oil in different types, or in different part of a flow unit are studied. It is evident that the remaining oil is controlled by the type of flow unit. The author reveals the relationship between flow unit and remaining oil distribution, builds the flowing models, predicts the variation of reservoir parameters in space, put forward different methods developing remaining oil in different flow unit. Especially, based on the results obtained in this paper, some suggestions for the adjustment of the developing flow units have been applied in Districts No.4 and No.7, and good results have been yielded. So, the results of this paper can guide oil field development. They are useful and significant for developing the remaining oil and enhancing the oil recovery efficiency.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A numerical approach to optimize dimensionless parameters of water-flooding porous media flows is proposed based on the analysis of the sensitivity factor defined as the variation ration of a target function with respect to the variation of dimensionless parameters. A complete set of scaling criteria for water-flooding reservoir of five-spot well pattern case is derived from the 3-D governing equations, involving the gravitational force, the capillary force and the compressibility of water, oil and rock. By using this approach, we have estimated the influences of each dimensionless parameter on experimental results and thus sorted out the dominant ones with larger sensitivity factors ranging from10-4to10-0 .

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Wave-induced instability of untrenched pipeline on sandy seabed is a `wave-soil-pipeline' coupling dynamic problem. To explore the mechanism of the pipeline instability, the hydrodynamic loading with U-shaped oscillatory flow tunnel is adopted, which is quite different from the previous experiment system. Based on dimensional analysis, the critical conditions for pipeline instability are investigated by altering pipeline submerged weight, diameter, soil parameters, etc. Based on the experimental results, different linear relationships between Froude number (Fr) and non-dimensional pipeline weight (G) are obtained for two constraint conditions. Moreover, the effects of loading history on the pipeline stability are also studied. Unlike previous experiments, sand scouring during the process of pipe's losing stability is detected in the present experiments. In addition, the experiment results are compared with the previous experiments, based on Wake II model for the calculation of wave-induced forces upon pipeline. It shows that the results of two kinds of experiments are comparable, but the present experiments provide better physical insight of the wave-soil-pipeline coupling effects.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A set of scaling criteria of a polymer flooding reservoir is derived from the governing equations, which involve gravity and capillary force, compressibility of water, oil, and rock, non-Newtonian behavior of the polymer solution, absorption, dispersion, and diffusion, etc. A numerical approach to quantify the dominance degree of each dimensionless parameter is proposed. With this approach, the sensitivity factor of each dimensionless parameter is evaluated. The results show that in polymer flooding, the order of the sensitivity factor ranges from 10(-5) to 10(0) and the dominant dimensionless parameters are generally the ratio of the oil permeability under the condition of the irreducible water saturation to water permeability under the condition of residual oil saturation, density, and viscosity ratios between water and oil, the reduced initial oleic phase saturation and the shear rate exponent of the polymer solution. It is also revealed that the dominant dimensionless parameters may be different from case to case. The effect of some physical variables, such as oil viscosity, injection rate, and permeability, on the dominance degree of the dimensionless parameters is analyzed and the dominant ones are determined for different cases.