16 resultados para pacs: information technolgy applications


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Digitization is the main feature of modern Information Science. Conjoining the digits and the coordinates, the relation between Information Science and high-dimensional space is consanguineous, and the information issues are transformed to the geometry problems in some high-dimensional spaces. From this basic idea, we propose Computational Information Geometry (CIG) to make information analysis and processing. Two kinds of applications of CIG are given, which are blurred image restoration and pattern recognition. Experimental results are satisfying. And in this paper, how to combine with groups of simple operators in some 2D planes to implement the geometrical computations in high-dimensional space is also introduced. Lots of the algorithms have been realized using software.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objective speckle from a stick-on foil is a new approach to applying the objective white light speckle method to in-plane displacement measurements. By a relatively easy technique a thin aluminum foil is mounted onto the specimen surface and a random grating is scratched onto it, yielding high reflectance and fine optical details. After double exposure by a direct recording system without using a lens, the resulting holographic film possesses a broad spatial spectrum and displacement information. Full-field contour maps of equal displacement can be obtained that are of good contrast and high sensitivity and that have a large adjustable measurement range. The method can be applied to practical engineering problems for both plane and developable curved surfaces.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Because of information digitalization and the correspondence of digits and the coordinates, Information Science and high-dimensional space have consanguineous relations. With the transforming from the information issues to the point analysis in high-dimensional space, we proposed a novel computational theory, named High dimensional imagery geometry (HDIG). Some computational algorithms of HDIG have been realized using software, and how to combine with groups of simple operators in some 2D planes to implement the geometrical computations in high-dimensional space is demonstrated in this paper. As the applications, two kinds of experiments of HDIG, which are blurred image restoration and pattern recognition ones, are given, and the results are satisfying.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

With a view to solve the problems in modern information science, we put forward a new subject named High-Dimensional Space Geometrical Informatics (HDSGI). It builds a bridge between information science and point distribution analysis in high-dimensional space. A good many experimental results certified the correctness and availability of the theory of HDSGI. The proposed method for image restoration is an instance of its application in signal processing. Using an iterative "further blurring-debluring-further blurring" algorithm, the deblured image could be obtained.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The semiconductor photonics and optoelectronics which have a great significance in the development of advanced high technology of information systems will be discussed in this paper. The emphasis will be put on the recent research carried out in our laboratory in enhanced luminescence from low dimensional materials such as SiGe/Si and Er-doped Si-rich SiO2/Si and Er-doped SixNy/Si. A ring shape waveguide structure, used to promote the effective absorption coefficient in PIN photodetector for 1.3 mu m wavelength and a resonant cavity enhanced structure, used to improve the quantum efficiency and response in heterostructure photo-transistor (HPT), are also proposed in this paper.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

With a view to solve the problems in modern information science, we put forward a new subject named High-Dimensional Space Geometrical Informatics (HDSGI). It builds a bridge between information science and point distribution analysis in high-dimensional space. A good many experimental results certified the correctness and availability of the theory of HDSGI. The proposed method for image restoration is an instance of its application in signal processing. Using an iterative "further blurring-debluring-further blurring" algorithm, the deblured image could be obtained.

Relevância:

30.00% 30.00%

Publicador:

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The semiconductor photonics and optoelectronics which have a great significance in the development of advanced high technology of information systems will be discussed in this paper. The emphasis will be put on the recent research carried out in our laboratory in enhanced luminescence from low dimensional materials such as SiGe/Si and Er-doped Si-rich SiO2/Si and Er-doped SixNy/Si. A ring shape waveguide structure, used to promote the effective absorption coefficient in PIN photodetector for 1.3 mu m wavelength and a resonant cavity enhanced structure, used to improve the quantum efficiency and response in heterostructure photo-transistor (HPT), are also proposed in this paper.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Photonic crystals (PC) have received extensive attention for the photonic band gap (PBG). The polystyrene (PS) particles bottom-up approach is a productive method for photonic crystal manufacture, this kind of photonic crystals having an unique PBG that depends on the particle's shape, sizes and defects. Heavy ion irradiation is a very useful method to induce defects in PC and change the shapes of the particles to tune the PBG. MeV heavy ion irradiation leads to an anisotropic deformation of the particles from spherical to ellipsoidal, the aspect ratio of which can be precisely controlled by using the ion energy and flux. Sub-micrometer PS particles were deposited on a Cu substrate and were irradiated at 230 K by using heavy ion energy and fluence in the range from 2 to 10 MeV and 1 x 10(14) cm(-2) to 1 x 10(15) cm(-2); respectively.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Maps of surface chlorophyllous pigment (Chl a + Pheo a) are currently produced from ocean color sensors. Transforming such maps into maps of primary production can be reliably done only by using light-production models in conjuction with additional information about the column-integrated pigment content and its vertical distribution. As a preliminary effort in this direction. $\ticksim 4,000$ vertical profiles pigment (Chl a + Pheo a) determined only in oceanic Case 1 waters have been statistically analyzed. They were scaled according to dimensionless depths (actual depth divided by the depth of the euphotic layer, $Z_e$) and expressed as dimensionless concentrations (actual concentration divided by the mean concentration within the euphotic layer). The depth $Z_e$ generally unknown, was computed with a previously develop bio-optical model. Highly sifnificant relationships were found allowing $\langle C \rangle_tot$, the pigment content of the euphotic layer, to be inferred from the surface concentration, $\bar C_pd$, observed within the layer of one penetration depth. According to their $\bar C_pd$ values (ranging from $0.01 to > 10 mg m^-3$), we categorized the profiles into seven trophic situations and computed a mean vertical profile for each. Between a quasi-uniform profile in eutrophic waters and a profile with a strong deep maximum in oligotrophic waters, the shape evolves rather regularly. The wellmixed cold waters, essentially in the Antarctic zone, have been separately examined. On average, their profiles are featureless, without deep maxima, whatever their trophic state. Averaged values their profiles are featureless, without deep maxima, whatever their trophic state. Averaged values their profiles are featureless, without deep maxima, whatever their trophic state. Averaged values of $ρ$, the ratio of Chl a tp (Chl a + Pheo a), have also been obtained for each trophic category. The energy stored by photosynthesizing algae, once normalized with respect to the integrated chlorophyll biomass $\langle C \rangle _tot $ is proportional to the available photosythetic energy at the surface via a parameter $ψ∗$ which is the cross-section for photosynthesis per unit of areal chlorophyll. By tanking advantage of the relative stability of $ψ∗.$ we can compute primary production from ocean color data acquired from space. For such a computation, inputs are the irradiance field at the ocean surface, the "surface" pigment from which $\langle C \rangle _tot$ can be derived, the mean $ρ value pertinent to the trophic situation as depicted by the $\bar C_pd or $\langle C \rangle _tot$ values, and the cross-section $ψ∗$. Instead of a contant $ψ∗.$ value, the mean profiles can be used; they allow the climatological field of the $ψ∗.$ parameter to be adjusted through the parallel use of a spectral light-production model.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this article, generalized torsion angles of derivatives of 1-[(2-hydroxyethoxy)methy1]-6(phenylthio)thymine(HEPT) were calculated, which include abundant three dimensional information of molecules. Molecular similarity matrix was built based on the calculated generalized torsion angles. These similarities were taken as the new variables, and the new variables were selected by using Leaps-and-Bounds regression analysis. Multiple regression analysis and neural networks were performed, and the satisfactory results were achieved by using the neural networks.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, new topological indices, EA Sigma and EAmax, are introduced. They are based on the extended adjacency matrices of molecules, in which the influences of factors of heteroatoms and multiple bonds were considered. The results show that EA Sigm