75 resultados para multi-dimensional systems


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Low-dimensional systems are constructed to investigate dynamics of vortex dislocations in a wake-type shear flow. High-resolution direct numerical simulations are employed to obtain flow snapshots from which the most energetic modes are extracted using proper orthogonal decomposition (POD). The first 10 modes are classified into two groups. One represents the general characteristics of two-dimensional wake-type shear flow, and the other is related to the three-dimensional properties or non-uniform characteristics along the span. Vortex dislocations are generated by these two kinds of coherent structures. The results from the first 20 three-dimensional POD modes show that the low- dimensional systems have captured the basic properties of the wake-type shear flow with vortex dislocation, such as two incommensurable frequencies and their beat frequency.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new high-order finite volume method based on local reconstruction is presented in this paper. The method, so-called the multi-moment constrained finite volume (MCV) method, uses the point values defined within single cell at equally spaced points as the model variables (or unknowns). The time evolution equations used to update the unknowns are derived from a set of constraint conditions imposed on multi kinds of moments, i.e. the cell-averaged value and the point-wise value of the state variable and its derivatives. The finite volume constraint on the cell-average guarantees the numerical conservativeness of the method. Most constraint conditions are imposed on the cell boundaries, where the numerical flux and its derivatives are solved as general Riemann problems. A multi-moment constrained Lagrange interpolation reconstruction for the demanded order of accuracy is constructed over single cell and converts the evolution equations of the moments to those of the unknowns. The presented method provides a general framework to construct efficient schemes of high orders. The basic formulations for hyperbolic conservation laws in 1- and 2D structured grids are detailed with the numerical results of widely used benchmark tests. (C) 2009 Elsevier Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this study, we report comparative luminescence properties of multi-layer InGaN quantum dots grown on C- and R-plane sapphire substrates by metal organic chemical vapor deposition (MOCVD). High-density InGaN quantum dots (QDs) are formed on GaN templates by decreasing the growth temperature and increasing the adatom hopping-barrier through surface passivation. Atomic force microscopy (AFM) has been employed to estimate the size and height of these dots. Photoluminescence (PL) spectra recorded from (1120) InGaN QDs/(1102) sapphire show much stronger emission intensity compared to spectra recorded from (0001) InGaN QDs/(0001) sapphire. Due to the absence of strong spontaneous polarization and piezoelectric field, such (1150) InGaN QDs in the active layers would lead to high efficiency light emitting devices. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We report a quantum dot (QD) ensemble structure in which the in-plane arrangements of the dots are in a hexagonal way while the dots are also vertically aligned. Such a distinct lateral ordering of QDs is achieved on a planar GaAs(l 0 0) rather than on a prepatterned substrate by strain-mediated multilayer vertical stacking of the QDs. The analysis indicates that the strain energy of the lateral island-island interaction is minimum for arrangement of the hexagonal ordering. The ordered dots demonstrate strong photoluminescence (PL) emission at room temperature (RT) and the full width at half maximum of PL peak at RT is only 50 meV. (C) 2007 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The melting process of nickel nanowires are simulated by using molecular dynamics with the quantum Sutten-Chen many-body force field. The wires studied were approximately cylindrical in cross-section and periodic boundary conditions were applied along their length; the atoms were arranged initially in a face-centred cubic structure with the [0 0 1] direction parallel to the long axis of the wire. The size effects of the nanowires on the melting temperatures are investigated. We find that for the nanoscale regime, the melting temperatures of Ni nanowires are much lower than that of the bulk and are linear with the reciprocal of the diameter of the nanowire. When a nanowire is heated up above the melting temperature, the neck of the nanowire begins to arise and the diameter of neck decreases rapidly with the equilibrated running time. Finally, the breaking of nanowire arises, which leads to the formation of the spherical clusters. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We try to connect the theory of infinite dimensional dynamical systems and nonlinear dynamical methods. The sine-Gordon equation is used to illustrate our method of discussing the dynamical behaviour of infinite dimensional systems. The results agree with those of Bishop and Flesch [SLAM J. Math. Anal. 21 (1990) 1511].

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Adiabatic shear localization is a mode of failure that occurs in dynamic loading. It is characterized by thermal softening occurring over a very narrow region of a material and is usually a precursor to ductile fracture and catastrophic failure. This reference source is the first detailed study of the mechanics and modes of adiabatic shear localization in solids, and provides a systematic description of a number of aspects of adiabatic shear banding. The inclusion of the appendices which provide a quick reference section and a comprehensive collection of thermomechanical data allows rapid access and understanding of the subject and its phenomena. The concepts and techniques described in this work can usefully be applied to solve a multitude of problems encountered by those investigating fracture and damage in materials, impact dynamics, metal working and other areas. This reference book has come about in response to the pressing demand of mechanical and metallurgical engineers for a high quality summary of the knowledge gained over the last twenty years. While fulfilling this requirement, the book is also of great interest to academics and researchers into materials performance.

Table of Contents

1Introduction1
1.1What is an Adiabatic Shear Band?1
1.2The Importance of Adiabatic Shear Bands6
1.3Where Adiabatic Shear Bands Occur10
1.4Historical Aspects of Shear Bands11
1.5Adiabatic Shear Bands and Fracture Maps14
1.6Scope of the Book20
2Characteristic Aspects of Adiabatic Shear Bands24
2.1General Features24
2.2Deformed Bands27
2.3Transformed Bands28
2.4Variables Relevant to Adiabatic Shear Banding35
2.5Adiabatic Shear Bands in Non-Metals44
3Fracture and Damage Related to Adiabatic Shear Bands54
3.1Adiabatic Shear Band Induced Fracture54
3.2Microscopic Damage in Adiabatic Shear Bands57
3.3Metallurgical Implications69
3.4Effects of Stress State73
4Testing Methods76
4.1General Requirements and Remarks76
4.2Dynamic Torsion Tests80
4.3Dynamic Compression Tests91
4.4Contained Cylinder Tests95
4.5Transient Measurements98
5Constitutive Equations104
5.1Effect of Strain Rate on Stress-Strain Behaviour104
5.2Strain-Rate History Effects110
5.3Effect of Temperature on Stress-Strain Behaviour114
5.4Constitutive Equations for Non-Metals124
6Occurrence of Adiabatic Shear Bands125
6.1Empirical Criteria125
6.2One-Dimensional Equations and Linear Instability Analysis134
6.3Localization Analysis140
6.4Experimental Verification146
7Formation and Evolution of Shear Bands155
7.1Post-Instability Phenomena156
7.2Scaling and Approximations162
7.3Wave Trapping and Viscous Dissipation167
7.4The Intermediate Stage and the Formation of Adiabatic Shear Bands171
7.5Late Stage Behaviour and Post-Mortem Morphology179
7.6Adiabatic Shear Bands in Multi-Dimensional Stress States187
8Numerical Studies of Adiabatic Shear Bands194
8.1Objects, Problems and Techniques Involved in Numerical Simulations194
8.2One-Dimensional Simulation of Adiabatic Shear Banding199
8.3Simulation with Adaptive Finite Element Methods213
8.4Adiabatic Shear Bands in the Plane Strain Stress State218
9Selected Topics in Impact Dynamics229
9.1Planar Impact230
9.2Fragmentation237
9.3Penetration244
9.4Erosion255
9.5Ignition of Explosives261
9.6Explosive Welding268
10Selected Topics in Metalworking273
10.1Classification of Processes273
10.2Upsetting276
10.3Metalcutting286
10.4Blanking293
 Appendices297
AQuick Reference298
BSpecific Heat and Thermal Conductivity301
CThermal Softening and Related Temperature Dependence312
DMaterials Showing Adiabatic Shear Bands335
ESpecification of Selected Materials Showing Adiabatic Shear Bands341
FConversion Factors357
 References358
 Author Index369
 Subject Index375

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The temperature dependence of hole spin relaxation time in both neutral and n-doped ultrathin InAs monolayers has been investigated. It has been suggested that D'yakonov-Perel (DP) mechanism dominates the spin relaxation process at both low and high temperature regimes. The appearance of a peak in temperature dependent spin relaxation time reveals the important contribution of Coulomb scatterings between carriers to the spin kinetics at low temperature, though electron-phonon scattering becomes dominant at higher temperatures. Increased electron screening effect in the n-doped sample has been suggested to account for the shortened spin relaxation time compared with the undoped one. The results suggest that hole spins are also promising for building solid-state qubits.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A metallization scheme of Ni/Ag/Ti/Au has been developed for obtaining high reflective contacts on p-type GaN. In order to find optimal conditions to get a high reflectivity, we studied samples with various Ni thicknesses, annealing temperatures and annealing times. By annealing at 500 degrees C for 5 min in an O-2 ambient, a reflectivity as high as 94% was obtained from Ni/Ag/Ti/Au (1/120/120/50 nm). The effects of Ti layers on the suppression of Ag agglomeration were investigated by using Auger electron spectroscopy (AES). From AES depth profiles, it is clear that Ti acts as a diffusion barrier to prevent Au atoms from diffusing into the Ag layer, which is important in the formation of high reflectivity.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

By means of the second derivative of the ground-state and first-excited energy, the quantum phase transitions (QPTs) for the distorted diamond chain (DDC) with ferromagnetic and antiferromagnetic frustrated interactions and the trimerized case are investigated, respectively. Our results show the plentiful quantum phases owing to the spin interaction competitions in the model. Meanwhile, by using the transfer-matrix renormalization-group technique, we study the two-site thermal entanglement of the DDC model in the thermodynamic limit for a further understanding of the QPTs.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We have systematically investigated the magnetic properties of Si-doped (Ga,Mn)As films. When the Si content is low, both Curie temperature (T-C) and carrier density (p) decrease compared with undoped (Ga,Mn)As, whereas a monotonic increase of T-C and p is observed with further increase in the doping content of Si. We discuss the possible mechanism for the changes obtained by different Si doping contents and attribute the results to a competition between the existence of Si-Ga (Si substitutes for Ga site) that acts as a donor and Si-I (Si interstitials) which is in favor of the improvement of ferromagnetism. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We investigate theoretically CdTe quantum dots containing a single Mn2+ impurity, including the sp-d exchange interaction between carriers and the magnetic ion and the short-range exchange interaction between electron and hole. We find anticrossing behaviors in the energy spectrum of the electron-hole (e-h) pair that arise from the interplay between exchange interactions and the magnetic field. In addition to the s-d exchange interaction, we find that other mechanisms inducing the anticrossings become important in the strong heavy hole-light hole (hh-lh) mixing regime. The transition strengths between the states with spin projection of Mn2+ ion S-z not equal -5/2 (S-z = -5/2) decrease (increase) with increasing magnetic fields due to the alignment of the Mn2+ spin. The spin splitting of the e-h pair states depends sensitively on the external magnetic and electric field, which reveals useful information about the spin orientation and position of the magnetic ion. Meanwhile, the manipulation of the position of the magnetic ion offers us a way to control the spin splitting of the carriers. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Mn-including InAs quantum dots (QDs) were fabricated by Mn-ion implantation and subsequent annealing. The optical, compositional, and structural properties of the treated samples were analyzed by photoluminescence (PL) and microscopy. Energy dispersive X-ray (EDX) results indicate that Mn ions diffused from the bulk GaAs into the InAs QDs during annealing, and the diffusion appears to be driven by the strain in the InAs QDs. The temperature dependence of the PL of Mn-including InAs QD samples exhibits QDs PL characteristics. At the same time, the heavy Mn-including InAs QD samples have ferromagnetic properties and high T-c. (c) 2008 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We have theoretically investigated the energy band structures of two typical magnetic superlattices formed by perpendicular or parallel magnetization ferromagnetic stripes periodically deposited on a two-dimensional electron gas (2DEG), where the magnetic profile in the perpendicular magnetization is of inversion anti-symmetry, but of inversion symmetry in parallel magnetization, respectively. We have shown that the energy bands of perpendicular magnetization display the spin-splitting and transverse wave-vector symmetry, while the energy bands of the parallel magnetization exhibit spin degeneration and transverse wave-vector asymmetry. These distinguishing spin-dependent and transverse wave-vector asymmetry features are essential for future spintronics devices applications. (c) 2008 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The confined longitudinal-optical phonon-assisted tunneling through a parabolic quantum well with double barriers in a magnetic field perpendicular to the interfaces is studied theoretically based on a dielectric continuum model. The numerical results show that the applied magnetic field sharpens and heightens the phonon-assisted tunneling peaks in agreement with experimental observation. Furthermore, the phonon-assisted magnetotunneling peaks shift towards the higher biases as the magnetic field increases. In contrast to the results for a rectangular quantum well, the ratio of peak to valley of the phonon-assisted tunneling is larger for the wider well case. It also indicates that the phonon-assisted tunneling current peaks can be easily observed for a wider parabolic quantum well. (C) 2008 Published by Elsevier B.V.