39 resultados para membrane protein
Resumo:
In order to identify genes encoding the outer membrane proteins (OMPs) of the myxobacter Flavobacterium columnare G(4), the expression library of the bacterium was screened by using rabbit antisera developed against its OMPs. Positive colonies of Escherichia coli M15 containing fragments encoding the bacterial OMPs were selected for cloning the relevant genes by genomic walking methods. Two genes encoding a membrane-associated zinc metalloprotease and prolyl oligopeptidase are reported in this paper. The membrane-associated zinc metalloprotease gene (map) is 1800 bp in length, coding for 449 amino acids (aa). Despite the presence of a conserved motif HEXXH for all metalloproteases, the special HEXXH similar to 32 aa similar to E motif of the F. columnare G(4) Map and its low level of identity with other reported zinc-containing metalloproteases may imply that the membrane-associated zinc metalloprotease of F. columnare G(4) represents a new family of zincins. The gene encoding prolyl oligopeptidase (Pop), a serine proteinase, is 2352 bp in length, coding for 649 aa. Sequence homology analysis revealed that the Pop is also novel as it has <50% identity with other reported prolyl oligopeptidase family proteins. The present study represents the first to employ anti-fish bacterial OMP sera to screen genes of membrane-associated proteases of fish pathogenic bacteria, and to provide necessary information for the examination of the role of the two genes in the infection and pathogenesis of F. columnare.
Resumo:
The unicellular cyanobacterium Synechocystis sp. PCC6803 can grow heterotrophically in complete darkness, given that a brief period of illumination is supplemented every day (light-activated heterotrophic growth, LAHG), or under very weak ( < 0.5 mumol m(-2) s(-1)) but continuous light. By random insertion of the genome with an antibiotic resistance cassette, mutants defective in LAHG were generated. In two identical mutants, sll0886, a tetratricopeptide repeat (TPR)-family membrane protein gene, was disrupted. Targeted insertion of sll0886 and three downstream genes showed that the phenotype was not due to a polar effect. The sll0886 mutant shows normal photoheterotrophic growth when the light intensity is at 2.5 mumol m(-2) s(-1) or above, but no growth at 0.5 mumol m(-2) s(-1). Homologs to sll0886 are also present in cyanobacteria that are not known of LAHG. sll0886 and homologs may be involved in controlling different physiological processes that respond to light of low fluence. (C) 2003 Federation of European Microbiological Societies. Published by Elsevier Science B.V. All rights reserved.
Resumo:
Outer membrane proteins (OMPs) of bacteria are key molecules interacting with the host environment. Flavobacterium columnare, a pathogen-causing columnaris disease of fish worldwide, was studied in order to understand the composition of its OMPs. The sarcosine-insoluble membrane fraction of the OMPs was analysed using sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) in combination with reverse-phase high-performance liquid chromatography-tandem mass spectrometry (RP-HPLC MS/MS). Thirty-six proteins were identified, including proteins involved in cell wall/membrane biogenesis, specific transport of various nutrients and in essential metabolism. The present study is the first report on the OMPs of F. columnare, and may serve as the basis for understanding the pathogenesis of the bacterium.
Resumo:
Monotopic membrane proteins are membrane proteins that interact with only one leaflet of the lipid bilayer and do not possess transmembrane spanning segments. They are endowed with important physiological functions but until now only few of them have been studied. Here we present a detailed biochemical, enzymatic and crystallographic characterization of the monotopic membrane protein sulfide:quinone oxidoreductase. Sulfide:quinone oxidoreductase is a ubiquitous enzyme involved in sulfide detoxification, in sulfide-dependent respiration and photosynthesis, and in heavy metal tolerance. It may also play a crucial role in mammals, including humans, because sulfide acts as a neurotransmitter in these organisms. We isolated and purified sulfide:quinone oxidoreductase from the native membranes of the hyperthermophilic bacterium Aquifex aeolicus. We studied the pure and solubilized enzyme by denaturing and non-denaturing polyacrylamide electrophoresis, size-exclusion chromatography, cross-linking, analytical ultracentrifugation, visible and ultraviolet spectroscopy, mass spectrometry and electron microscopy. Additionally, we report the characterization of its enzymatic activity before and after crystallization. Finally, we discuss the crystallization of sulfide:quinone oxidoreductase in respect to its membrane topology and we propose a classification of monotopic membrane protein crystal lattices. Our data support and complement an earlier description of the three-dimensional structure of A. aeolicus sulfide:quinone oxidoreductase (M. Marcia, U. Ermler, G. Peng, H. Michel, Proc Natl Acad Sci USA, 106 (2009) 9625-9630) and may serve as a reference for further studies on monotopic membrane proteins. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
在高等植物有性生殖过程中,花粉管作为运输精子到胚珠的载体,它的生长具有高度极性化,并且要依赖于微丝。由于花粉管本身所具的特性,它已经成为研究细胞相互识别、胞内和胞外信号的模式系统。本文为了研究微丝在白杄(Picea meyeri Rehd. et Wils.)花粉管生长中的作用,我们应用不同浓度的微丝聚合抑制剂Latrunculin B (LATB) 处理花粉管,并通过激光共聚焦显微镜观察微丝聚合状态的动态变化。结果发现,在低浓度下的LATB能使花粉管中的微丝严重解聚,且抑制其顶端生长。 我们进一步利用蛋白质组学的手段,分析了白杄花粉管微丝解聚后蛋白质的表达图谱。通过双向电泳分离出500个左右考马斯亮兰染色的蛋白质斑点,经过软件分析发现,其中大部分蛋白质的表达量未发生变化,而只有110个蛋白斑点有较大变化。将这些蛋白斑点从胶上切下酶解后用于质谱鉴定,最终鉴定出35个蛋白,其中有18个为上调蛋白,17个下调蛋白。根据其主要功能,通常可分为碳水化合物代谢、胁迫反应、信号和细胞扩展等几类。我们发现由于微丝解聚引起的能量代谢水平降低,可能与依赖于信号传导的微丝重组过程相关。此外,当LATB浓度增加到50 nM时,与细胞壁多糖合成相关的两个蛋白,如reversibly glycosylated polypeptide和type IIIa membrane protein cp-wap13几乎不表达,这说明当微丝聚合完全被抑制后,依赖于微丝的分泌系统也受到影响,从而引起相应蛋白质变化,最终导致细胞壁成分合成的减少。细胞骨架蛋白actin的下调,进一步说明微丝在花粉管生长过程中起着提供或支持的一种机制,也就是能调节信号介导的花粉管生长,并使其在特定的时期到达特定的部位,从而完成植物的受精作用。
Resumo:
从沼泽绿牛蛙虹彩病毒(Rana gryliovirus,RGV)基因组中克隆了十四烷基化膜蛋白(myristylated membrane protein,MMP)基因的全部编码区,序列分析表明,RGVmmp基因全长972 bp,编码一个长为323 aa,分子量为35×103的蛋白.氨基酸同源性比对分析,与同为蛙病毒属的其他病毒的相应蛋白同源性都在64%以上.构建重组表达载体,进行了原核表达,获得一条约53×103的融合蛋白,并制备出抗血清.通过RT-PCR和Westernblot分析确定了RGV感染过程
Resumo:
The pathogenic process of highly pathogenic avian influenza virus (HPAIV) infection is poorly understood. To explore the differential expression of kidney genes as a result of HPAIV infection, two cDNA libraries were constructed from uninfected and infected kidneys by suppression subtractive hybridization (SSH). Fifteen genes including IFN-stimulated genes (ISG12), lymphocyte antigen 6 complex locus E gene (LY6E), matrix Gla protein gene (MGP), lysozyme gene, haemopoiesis related membrane protein I gene, KIAA1259, MGC68696, G6pe-prov protein gene (G6PC), MGC4504, alcohol dehydrogenase gene (ADH), glutathione S-transferase gene (GST), sodium-dependent high-affinity dicarboxylate transporter gene (SDCT), Synaptotagmin XV (SytXV) and two novel genes were found significantly up-regulated or dramatically suppressed. Differential expression of these genes was further identified by Northern blot. Functional analysis indicated that the regulation of their expression might contribute to the pathogenic process of HPAIV infection. In contrast, the increased expression of three IFN-stimulated genes named ISG12, LY6E, and haemopoiesis related membrane protein 1 gene might reflect host defense responses. Further study showed that ISG12 protein failed to directly interact with NS1 protein of HPAIV which expressed simultaneously in the organs where HPAIV replication occurred, by use of BacterioMatch two-hybrid system. Therefore, our findings may provide new insights into understanding the molecular mechanism underlying the pathophysiological process of HPAIV infection in chicken. (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Poly(L-lactide) (PLLA) surface was modified via aminolysis by poly(allylamine hydrochloride) (PAH) at high pH and subsequent electrostatic self-assembly of poly(sodium styrenesulfonate) (PSS) and PAH, and the process was monitored by X-ray photoelectron spectroscopy (XPS) and contact angle measurement. These modified PLLAs were then used as charged substrates for further incorporation of gelatin to improve their cytocompatibility. The amphoteric nature of the gelatin was exploited and the gelatin was adsorbed to the negatively charged PLLA/PSS and positively charged PLLA/PAH at pH = 3.4 and 7.4, respectively. XPS and water contact angle data indicated that the gelatin adsorption at pH = 3.4 resulted in much higher surface coverage by gelatin than at pH = 7.4. All the modified PLLA surfaces became more hydrophilic than the virgin PLLA. Chondrocyte culture was used to test the cell attachment, cell morphology and cell viability on the modified PLLA substrates.
Resumo:
The effect of lanthanum ions on the activity of the cytoplasmic domain of human erythrocyte band 3 (CDB3), which was measured according to the inhibition to aldolase, was studied. In the presence of low concentration of lanthanum ions, the function of CDB3 to inhibit aldolase activity decreased significantly. It indicated that lanthanum ions in the erythrocyte would change the conformation of CDB3 and influence the control on aldolase activity.
Resumo:
Sulfide: quinone oxidoreductase (SQR) is a flavoprotein with homologues in all domains of life except plants. It plays a physiological role both in sulfide detoxification and in energy transduction. We isolated the protein from native membranes of the hyperthermophilic bacterium Aquifex aeolicus, and we determined its X-ray structure in the "as-purified,'' substrate-bound, and inhibitor-bound forms at resolutions of 2.3, 2.0, and 2.9 angstrom, respectively. The structure is composed of 2 Rossmann domains and 1 attachment domain, with an overall monomeric architecture typical of disulfide oxidoreductase flavoproteins. A. aeolicus SQR is a surprisingly trimeric, periplasmic integral monotopic membrane protein that inserts about 12 angstrom into the lipidic bilayer through an amphipathic helix-turn-helix tripodal motif. The quinone is located in a channel that extends from the si side of the FAD to the membrane. The quinone ring is sandwiched between the conserved amino acids Phe-385 and Ile-346, and it is possibly protonated upon reduction via Glu-318 and/or neighboring water molecules. Sulfide polymerization occurs on the re side of FAD, where the invariant Cys-156 and Cys-347 appear to be covalently bound to polysulfur fragments. The structure suggests that FAD is covalently linked to the polypeptide in an unusual way, via a disulfide bridge between the 8-methyl group and Cys-124. The applicability of this disulfide bridge for transferring electrons from sulfide to FAD, 2 mechanisms for sulfide polymerization and channeling of the substrate, S2-, and of the product, S-n, in and out of the active site are discussed.
Resumo:
Aims: To investigate the species-specific prevalence of vhhP2 among Vibrio harveyi isolates and the applicability of vhhP2 in the specific detection of V. harveyi from crude samples of animal and environmental origins. Methods and Results: A gene (vhhP2) encoding an outer membrane protein of unknown function was identified from a pathogenic V. harveyi isolate. vhhP2 is present in 24 V. harveyi strains isolated from different geographical locations but is absent in 24 strains representing 17 different non-V. harveyi species, including V. parahaemolyticus and V. alginolyticus. A simple polymerase chain reaction method for the identification of V. harveyi was developed based on the conserved sequence of vhhP2. This method was demonstrated to be applicable to the quick detection of V. harveyi from crude animal specimens and environmental samples. The specificity of this method was tested by applying it to the examination of two strains of V. campbellii, which is most closely related to V. harveyi. One of the V. campbellii strains was falsely identified as V. harveyi. Conclusions: vhhP2 is ubiquitously present in the V. harveyi species and is absent in most of the non-V. harveyi species; this feature enables vhhP2 to serve as a genetic marker for the rapid identification of V. harveyi. However, this method can not distinguish some V. campbellii strains from V. harveyi. Significance and Impact of the Study: the significance of our study is the identification of a novel gene of V. harveyi and the development of a simple method for the relatively accurate detection of V. harveyi from animal specimens and environmental samples.
Resumo:
Tumor necrosis factor receptors (TNFRs) are a superfamily of proteins characterized by the unique cysteine-rich domain (CRD) and their important roles in diverse physiological and pathological events such as inflammation, apoptosis, autoimmunity and organogenesis. The first member of the molluscan TNFR family, designated as CfTNFR, was identified from Zhikong scallop Chlamys farreri by expressed sequence tag (EST) and rapid amplification of cDNA ends (RACE) approaches. The full-length cDNA of CfTNFR was of 1334 bp, consisting of a 5' UTR of 17 bp, a 3'UTR of 69 by with a poly (A) tail, and an open reading frame (ORE) of 1248 by encoding a polypeptide of 415 amino acids with a theoretical isoelectric point of 8.33 and predicted molecular weight of 47.07 kDa. There were a signal peptide, a CRD, a transmembrane region and a death domain in the deduced amino acid sequence of CfTNFR, suggesting that it was a typical type 1 membrane protein. The high identities (22-40%) of CfTNFR with other TNFR superfamily members indicated that CfTNFR should be a member of TNFR superfamily, and moreover, it should be the first death domain-containing TNFR found in invertebrates. Phylogenetic analysis revealed that CfTNFR was closely related to TNFR-like proteins from Strongylocentrotus purpuratus, Drosophila melanogaster and Ciona intestinalis, and they formed a separate branch apart from vertebrate TNFRs. The spatial expression of CfTNFR transcripts in healthy and bacteria challenged scallops was examined by quantitative real-time PCR. CfTNFR transcripts could be detected in all tested tissues, including haemocytes, gonad, gill, mantle and hepatopancreas, and significantly up-regulated in the tissues of gonad, gill, mantle and hepatopancreas after Listonella anguillarum challenge, indicating that CfTNFR was constitutive and inducible acute-phase protein involved in immune defence. The present results suggested the existence of the TNFR-like molecules and TNF-TNFR system in low invertebrates, and provided new insights into the role of CfTNFR in scallop innate immune responses to invading microorganisms. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
VhhP2 is an Outer membrane protein identified in a pathogenic Vibrio harveyi strain, T4, isolated from diseased fish. When used as a Subunit Vaccine, purified recombinant VhhP2 affords high level of protection upon Japanese flounder against V harveyi challenge. Vaccination with VhhP2 induced the expression of a number of immune-related genes, especially those encoding immunoglobulin M (IgM) and major histocompatibility complex (MHC) II alpha. A VhhP2 surface display system, in the form of the fish commensal strain FIR harboring the vhhP2-expressing plasmid pJVP, was constructed. PF3/pJVP is able to produce and present recombinant VhhP2 on cell surface. Vaccination of fish with live PF3/pJVP via intraperitoneal injection elicited Strong immunoprotection. Vaccination of fish orally with live PF3/pJVP embedded in alginate microspheres also induced effective immunoprotection. In addition, a VhhP2-based surface display system was created, in which VhhP2 serves as a carrier for the Surface delivery of a heterologous Edwardsiella tarda immunogen, Et18, that is fused in-frame to VhhP2. DH5 alpha/pJVP18, which expresses and surface-displays the VhhP2-Et18 chimera, proved to be an effective vaccine that call protect fish against infections by V. harveyi and E. tarda to the extents comparable to those produced by vaccination with purified recombinant VhhP2 and Et18, respectively. These data suggest that VhhP2 may be applied as a vaccine and a vaccine carrier against infections by V. harveyi and other pathogens such as F. tarda. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
In the present study, we observed the in vitro effect of aniracetam on membrane fluidity and free calcium concentrations (Ca(2+)i) of frontal cortical (FC) and hippocampal (HP) synaptosomes of aged mice and young mice treated with amyloid-beta protein (A