50 resultados para mechanical composition


Relevância:

60.00% 60.00%

Publicador:

Resumo:

以草原和稀树草原中木本植物多度的增加为特征的草地灌丛化,是全球范围普遍发生的现象,但灌丛化的生态学效应目前仍存在争议。对灌丛化草地生态系统特征与过程的研究,将有助于我们进一步了解草地生态系统的退化和恢复机理,为退化草原恢复与管理实践提供理论依据。 本研究以位于内蒙古锡林河流域, 一个经23年围封恢复、具有明显灌丛化特征的草原生态系统为研究对象,通过分析小叶锦鸡儿灌丛及其相邻草本群落下的土壤容重、机械组成、土壤有机碳(SOC)、全氮(TN)和无机氮(IN)的差异,确定小叶锦鸡儿灌丛对草原土壤物理化学性状的影响。主要结果如下: (1)小叶锦鸡儿灌丛化增加了表层土壤(0-5 cm)粗粒级颗粒的比例,降低了浅层土壤(0-20 cm)的容重,较大灌丛下10-20 cm土层仍存在这种现象。这至少部分归因于灌丛对凋落物的截获积聚,以及小叶锦鸡儿的根系分泌物在质和量上较之草本植物的不同,促进了土壤团聚体的发育。 (2)小叶锦鸡儿灌丛斑块引起了典型草原生态系统土壤有机碳、全氮和无机氮的空间分布的变化。在浅层土壤中(0-20cm),由灌丛斑块内部向外部SOC、TN和IN均趋于降低。随小叶锦鸡儿灌丛大小(存在时间)的增加,0-20 cm和60-100cm土层SOC和TN均有增加趋势。 (3)除表层(0-5cm)外,小叶锦鸡儿大灌丛与邻近草地土壤C/N比值无显著差异。 总之,小叶锦鸡儿灌丛不仅改变了草原土壤的物理性状,而且提高了灌丛下土壤有机碳和氮的含量,改变了草原生态系统C、N的空间分布格局,表明草原灌丛化明显改变了草原生态系统的碳氮循环。基于草原约占陆地面积的40%以及全球草地灌丛化普遍存在的事实,这种伴随草原灌丛化发生的土壤有机碳和氮的变化可能会对全球碳氮循环和气候有显著影响。

Relevância:

60.00% 60.00%

Publicador:

Resumo:

运用土壤颗粒质量分形模型计算松嫩平原低平地安达试区植被分布区和碱斑区样点土壤颗粒的分形维数,并建立分形维数与土壤颗粒不同粒级间的回归关系,以探讨土地碱化后土壤粒径分布的分形特征及其与土壤物理性状的关系。结果表明:安达试区土壤颗粒分形维数较高,平均分别仅有48.7×10-5cm/s(Pit A)和4.30×10-6cm/s(Pit B),反映了该区土壤细颗粒含量高、土壤大孔隙数量少、土壤饱和导水率低的特征;土壤颗粒分形维数与黏粒含量呈对数正相关关系,而与粉粒和砂粒含量相关性不显著,说明在安达试区,影响土壤颗粒分形维数的主要因素是黏粒含量;羊草地土壤颗粒分形维数在土壤垂直剖面上的变异较大,说明植被生长促进了土壤质地的变异;碱斑地土壤颗粒分形维数明显大于羊草地,细颗粒含量高,饱和导水率低,说明碱斑的形成恶化了土壤物理性质;土壤颗粒分形维数可以反映安达市土壤物理性质的好坏,能作为土壤退化和生态环境恶化的评价指标。研究结果可为安达市以及松嫩平原盐碱地生态环境的修复和治理提供科学依据。

Relevância:

60.00% 60.00%

Publicador:

Resumo:

采用方格网取样,利用经典统计学和地统计学方法,研究了三种不同观测尺度共5个研究区域,总面积为3.12km2褐土耕层土壤机械组成的空间变异性。经典统计特征量表明,不同尺度下褐土耕层土壤机械组成的样本数据存在着不同的差异性。变异函数结构分析显示,土壤机械组成的空间变异在各方向上具有不同变率,但均可通过线性变换而转换为各向同性的统一结构,属于几何各向异性结构;不同观测尺度上有着不同的空间结构特征,对不同空间结构的区域化变量确定了不同的理论模型参数,并绘制克立格图,给出不同观测尺度下满足独立取样的合理取样数目。较清晰地阐明了褐土耕层机械组成在不同尺度上的空间分布规律。为该地区其它土壤性质的空间变异性研究提供理论依据,并为精准农业土壤信息库提供参考。尝试应用地统计学方法对不同尺度进行外推估值,发现在不同观测尺度和不同地形条件下,不同观测变量有着不同的标准差临界值及最大外推估值尺度,外推估值方差随着外推尺度的增大而增大。运用地统计学外推估值可为解决尺度扩展提供一种有效的解决途径。

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A series of acrylonitrile-butadiene-styrene (ABS) with different rubber content were prepared by diluting ABS grafting copolymer containing 60% rubber with a styrene-acrylonitrile copolymer. ABS prepared were blended with bisphenol-A-polycarbonate (PC) at the ratio of 70/30, 50/50, and 30/70 to prepare PC/ABS blends. Influence of rubber content in ABS on the properties of ABS and PC/ABS blends were investigated. PC/ABS blends with different compositions got good toughness when the rubber in ABS increased to the level that ABS itself got good toughness. The tensile properties and processability of PC/ABS blends decreased with the increase of the total rubber content introduced into the blends. ABS with the rubber content of 30 wt% is most suitable to be used to prepare PC/ABS blends. The rubber content in ABS affected the viscosity of ABS, and subsequently the viscosity ratio of PC to ABS. As a result, the morphology of PC/ABS blends varied. The increase of rubber content in ABS results in finer structure of PC/ABS blends.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Zr48.5Cu46.5Al5 bulk metallic glass (BMG) composites with diameters of 3 and,4 mm were prepared through suction casting in an arc melting furnace by modulating the alloy composition around the monothetic BMG composition of the high glass forming ability. Microstructural characterization reveals that the composites contain micron-sized CuZr phase with martensite structure, as well as nano-sized Zr2Cu crystalline particles and Cu10Zr7 plate-like phase embedded in an amorphous matrix. Room temperature compression tests showed that the composites exhibited significant strain hardening and obvious plastic strain of 7.7% for 3 nun and 6.4% for 4 nun diameter samples, respectively.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The surface mechanical attrition treatment (SMAT) technique was developed to synthesize a nanocrystalline (NC) layer on the surface of metallic materials for upgrading their overall properties and performance. In this paper, by means of SMAT to a pure zirconium plate at the room temperature, repetitive multidirectional peening of steel shots (composition (wt%): 1C, 1.5Cr, base Fe) severely deformed the surface layer. A NC surface layer consisting of the intermetallic compound FeCr was fabricated on the surface of the zirconium. The microstructure characterization of the surface layer was performed by using X-ray diffraction analysis, optical microscopy, scanning and transmission electron microscopy observations. The NC surface layer was about 25 mu m thick and consisted of the intermetallic compound FeCr with an average grain size of 25 +/- 10 nm. The deformation-induced fast diffusion of Fe and Cr from the steel shots into Zr occurred during SMAT, leading to the formation of intermetallic compound. In addition, the NC surface layer exhibited an ultrahigh nanohardness of 10.2 GPa.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

(100 - x)TeO2 - xNb(2)O(5) (x=5-20) mobic tellurite glasses doped with 0.5 mol.% Er2O3 were synthesized, and their thermal, mechanical, and spectroscopic properties were measured and compared to the properties of the typical 75TeO(2)-20ZnO-5Na(2)O (TZN) tellurite glass. The refractive index (n(d)), density (p), and glass transition temperature (T-g) of bulk glasses increase with the Nb2O5 content. The Vickers microhardness (H-v) of bulk glass in niobic tellurite glasses also increases with the Nb2O5 content. The values (2.5-3.2 GPa) of H, in the niobic tellurite glasses are 47-88% larger than that (1.7 GPa) in TZN glass. The effect of Nb2O5 content on absorption spectra, the Judd-Ofelt parameters Omega(t) (t = 2, 4, 6), fluorescence spectra and the lifetimes of Er3+ :I-13/2 level were also investigated, and the stimulated emission crosssection was calculated from McCumber theory. With increasing Nb2O5 content in the glass composition, the Omega(t) (t = 2, 4, 6) parameters, fluorescence full width at half maximum (FWHM) Of I-13/2 of Er3+ increase, while the I-4(13/2) lifetimes of Er3+ decreases. Compared with TZN glass, the gain bandwidth properties of Er3+-doped TeO2-Nb2O5 glass is much larger than in tellurite glass based TeO2-ZnO-Na2O system, bismush-based glass, germanate, and silicate glasses, which indicates that TeO2-Nb2O5 glasses are better choice as a practical available host material for broadband Er3+-doped amplifier. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The initiation of laser damage within optical coatings can be better understood by thermal-mechanical modeling of coating defects. The result of this modeling shows that a high-temperature rise and thermal stress can be seen just inside the nodular defect compared to surrounding coating layers. The temperature rise and thermal stress tend to increase with seed diameter. Shallower seed tend to cause higher temperature rise and greater thermal stress. There is a critical seed depth at which thermal stress is largest. The composition of the seed resulting from different coating-material emission during evaporation can affect the temperature rise and thermal stress distribution.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The ball milling of Fe-24Mn and Fe-24Mn-6Si mixed powders has been performed by the high energy ball milling technique. By employing X-ray diffraction and Mossbauer measurements, the composition evolution during the milling process has been investigated. The results indicate the formation of paramagnetic Fe-Mn or Fe-Mn-Si alloys with a metastable fee phase as final products, which imply that the Fe and Mn proceed a co-diffusion mechanism through the surface of fragmented powders. The thermal stability and composition evolution of the as-milled alloys were discussed comparing with the bulk alloy. (C) 1999 Published by Elsevier Science S.A. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Mg-8Zn-8Al-4RE (RE = mischmetal, mass%) magnesium alloy was prepared by using casting method. The microstructure and mechanical properties of as-cast alloy, solid solution alloy and aged alloy samples have been investigated. Optical microscopy, X-ray diffractometery and scanning electron microscope attached energy spectrometer were used to characterize the microstructure and phase composition for the alloy. Net shaped tau-Mg-32(Al,Zn)(49) phase was obtained at the grain boundary, and needle-like or blocky Al11RE3 phase disperses in grain boundary and alpha-Mg matrix. The tau-Mg-32(Al,Zn)(49) phase disappeared during solution treatment and a new phase of Al(2)CeZn2 formed during subsequent age treatment. The mechanical properties were performed by universal testing machine at room temperature, 150 degrees C and 200 degrees C, separately. The ultimate tensile strength of as-cast alloy is lower compared to an age treatment alloy at 200 degrees C for 12h. The strengths decreased with enhancing test temperature, but elongation has not been effect by age treatment.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The binary blends of polyamide 1010 (PA1010) with the high-impact polystyrene (HIPS)/maleic anhydride (MA) graft copolymer (HIPS-g-MA) and with HIPS were prepared using a wide composition range. Different blend morphologies were observed by scanning electron microscopy according to the nature and content of PA1010 used. Compared with the PA1010/HIPS binary blends, the domain sizes of dispersed-phase particles in PA1010/HIPS-g-MA blends were much smaller than that in PA1010/HIPS blends at the same compositions. It was found that the tensile properties of PA1010/HIPS-g-MA blends were obviously better than that of PA 1010/HIPS blends. Wide-angle xray diffraction analyses were performed to confirm that the number of hydrogen bonds in the PA1010 phase decreased in the blends of PA1010/HIPS-g-MA. These behaviors could be attributed to the chemical interactions between the two components and good dispersion in PA1010/HIPS-g-MA blends.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mechanical and structural properties of blends of phenolphthalein poly(ether sulfone) (PBS-C) with ultra-high molecular weight polyethylene (UHMWPE) were investigated using tensile and bending testing, scanning electron microscopy and transition electron microscopy. The incorporation of minor amounts of UHMWPE (2 wt.-%) into PES-C has a reinforcement effect. With higher concentrations of UHMWPE, the mechanical properties decrease gradually. Structural studies demonstrated that the blends are multiphasic in the whole composition range. The minor UHMWPE, dispersed uniformly and oriented along the flow direction, as well as the strong interfacial adhesion contribute to the increase of the mechanical performance of the blends. The domain size of the UHMWPE phase was found to increase with the increase of its concentration.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mechanical properties and morphology of blends of polypropylene (PP) with high molecular weight polyethylene (HMWPE) prepared by coprecipitation from xylene solution are investigated. Compared to blends of PP with commercial high-density polyethylene (HDPE), the mechanical properties of the blends of PP/HMWPE are much superior to those of PP/HDPE blends. Not only is the tensile strength stronger, but also the elongation at break is much higher than that of the PP/HDPE blends of the same composition. These differences increase with increasing HMWPE and HDPE content. Scanning electron microscopy of the fracture surface resulting from the tensile tests shows that the compatibility in PP/HMWPE blends is much better than that in PP/HDPE blends. This is most likely attributable to the enhanced chain entanglement of HMWPE with the PP in the amorphous phase due to the lower crystallinity, owing to the high molecular weight of the HMWPE, and a much more flexible chain. The thermal behavior and spherulite morphology of both blends are also investigated.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The blends of polyethersulfone and phenoxy were prepared by melt mixing in a Brabender-like apparatus. The specimens for measurements were made by compression molding and then were water-quenched at room temperature under pressure. The tensile strength, tensile modulus, elongation at break and yield, density, thermal analysis, and dynamic mechanical properties were each measured. The dependence of tensile strength, tensile modulus, elongation at break and yield, and density on composition was obtained. The relationship between tensile modulus and elongation at break and yield and speed of the crosshead at different weight ratios of the blends is shown. The effects of composition and miscibility on the mechanical properties are discussed. (C) 1996 John Wiley & Sons, Inc.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The morphology and dynamic mechanical properties of blends of poly(ether imide) (PEI) and nylon 66 over the full composition range have been investigated. Torque changes during mixing were also measured. Lower torque values than those calculated by the log-additivity rule were obtained, resulting from the slip at the interface due to low interaction between the components. The particle size of the dispersed phase and morphology of the blends were examined by scanning electron microscopy. The composition of each phase was calculated. The blends of PEI and nylon 66 showed phase-separated structures with small spherical domains of 0.3 similar to 0.7 mu m. The glass transition temperatures (T(g)s) of the blends were shifted inward, compared with those of the homopolymers, which implied that the blends were partially miscible over a range of compositions. T-g1, corresponding to PEI-rich phase, was less affected by composition than T-g2, corresponding to nylon 66-rich phase. This indicated that the fraction of PEI mixed into nylon 66-rich phase increased with decreasing PEI content and that nylon 66 was rarely mixed into the PEI-rich phase. The effect of composition on the secondary relaxations was examined. Both T-beta, corresponding to the motion of amide groups in nylon 66, and T-gamma, corresponding to that of ether groups in PEI, were shifted to higher temperature, probably because of the formation of intermolecular interactions between the components.