60 resultados para long-range correlation
Resumo:
We introduce a conceptual model for the in-plane physics of an earthquake fault. The model employs cellular automaton techniques to simulate tectonic loading, earthquake rupture, and strain redistribution. The impact of a hypothetical crustal elastodynamic Green's function is approximated by a long-range strain redistribution law with a r(-p) dependance. We investigate the influence of the effective elastodynamic interaction range upon the dynamical behaviour of the model by conducting experiments with different values of the exponent (p). The results indicate that this model has two distinct, stable modes of behaviour. The first mode produces a characteristic earthquake distribution with moderate to large events preceeded by an interval of time in which the rate of energy release accelerates. A correlation function analysis reveals that accelerating sequences are associated with a systematic, global evolution of strain energy correlations within the system. The second stable mode produces Gutenberg-Richter statistics, with near-linear energy release and no significant global correlation evolution. A model with effectively short-range interactions preferentially displays Gutenberg-Richter behaviour. However, models with long-range interactions appear to switch between the characteristic and GR modes. As the range of elastodynamic interactions is increased, characteristic behaviour begins to dominate GR behaviour. These models demonstrate that evolution of strain energy correlations may occur within systems with a fixed elastodynamic interaction range. Supposing that similar mode-switching dynamical behaviour occurs within earthquake faults then intermediate-term forecasting of large earthquakes may be feasible for some earthquakes but not for others, in alignment with certain empirical seismological observations. Further numerical investigation of dynamical models of this type may lead to advances in earthquake forecasting research and theoretical seismology.
Resumo:
We report the first three-particle coincidence measurement in pseudorapidity (Delta eta) between a high transverse momentum (p(perpendicular to)) trigger particle and two lower p(perpendicular to) associated particles within azimuth |Delta phi| < 0.7 in root s(NN) = 200 GeV d + Au and Au + Au collisions. Charge ordering properties are exploited to separate the jetlike component and the ridge (long range Delta eta correlation). The results indicate that the correlation of ridge particles are uniform not only with respect to the trigger particle but also between themselves event by event in our measured Delta eta. In addition, the production of the ridge appears to be uncorrelated to the presence of the narrow jetlike component.
Resumo:
It has been shown in CA simulations and data analysis of earthquakes that declustered or characteristic large earthquakes may occur with long-range stress redistribution. In order to understand long-range stress redistribution, we propose a linear-elastic but heterogeneous-brittle model. The stress redistribution in the heterogeneous-brittle medium implies a longer-range interaction than that in an elastic medium. Therefore, it is surmised that the longer-range stress redistribution resulting from damage in heterogeneous media may be a plausible mechanism governing main shocks.
Resumo:
The mechanism of hole charge transfer in DNA of various lengths and sequences is investigated based on a partially coherent tunneling theory (Zhang et al., J Chem Phys 117:4578, 2002), where the effects of phase-breaking in adenine-thymine and guanine-cytosine base pairs are treated on equal foot. This work aims at providing a self-consistent microscopic interpretation for rate experiments on various DNA systems. We will also clarify the condition under which the simple superexchange-mediated-hopping picture is valid, and make some comments on the further development of present theory.
Resumo:
A quantum chemistry based Green's function formulation of long-range charge transfer in deoxyribose nucleic acid (DNA) double helix is proposed. The theory takes into account the effects of DNA's electronic structure and its incoherent interaction with aqueous surroundings. In the implementation, the electronic tight-binding parameters for unsolvated DNA molecules are determined at the HF/6-31G* level, while those for individual nucleobase-water couplings are at a semiempirical level by fitting with experimental redox potentials. Numerical results include that: (i) the oxidative charge initially at the donor guanine site does hop sequentially over all guanine sites; however, the revealed rates can be of a much weaker distance dependence than that described by the ordinary Ohm's law; (ii) the aqueous surroundings-induced partial incoherences in thymine/adenine bridge bases lead them to deviate substantially from the superexchange regime; (iii) the time scale of the partially incoherent hole transport through the thymine/adenine pi stack in DNA is about 5 ps. (C) 2002 American Institute of Physics.
Resumo:
A generalized scattering matrix formalism is constructed to elucidate the interplay of electron resonance, coherence, dephasing, inelastic scattering, and heterogeneity, which play important roles in the physics of long-range electron transfer/transport. The theory consists of an extension of the standard Buttiker phase-breaking model and an analytical expression of the electron transmission coefficient for donor-bridge-acceptor systems with arbitrary length and sequence. The theory incorporates the following features: Dephasing-assisted off-resonance enhancement, inelasticity-induced turnover, resonance enhancement and its dephasing-induced suppression, dephasing-induced smooth superexchange-hopping transition, and heterogeneity effects. (C) 2002 American Institute of Physics.
Resumo:
Based on the Buttiker dephasing model, we propose an analytical scattering matrix approach to the long-range electron transfer phenomena. The present efficient scheme smoothly interpolates between the superexchange and the sequential hopping mechanisms. Various properties such as the drastic dephasing-assisted enhancement and turnover behaviors are demonstrated in good agreement with those obtained via the dynamical reduced density-matrix methods. These properties are further elucidated as results of the interplay among the dephasing strength, the tunneling parameter, and the bridge length of the electron transfer system. (C) 2001 American Institute of Physics.
Resumo:
本论文介绍了重离子耗散反应产物激发函数中能量结构研究的概况及相关的理论模型,描述了重离子耗散反应激发函数测量实验的基本技术和数据分析方法,并着重分析了19F+27Al耗散反应产物激发函数之间的关联特性。重离子耗散反应产物激发函数的涨落结构研究,是分析重离子耗散反应中各物理量随时间的演化过程的有效方法。本论文报道了实验室系110.25―118.75MeV 19F+27Al耗散反应产物激发函数测量的实验结果,通过对激发函数的涨落结构进行关联函数分析,结合有关理论模型,探讨了耗散反应产物激发函数的能量结构的物理本质。 19F+27Al耗散反应中,不同角度测量到的类弹产物的激发函数之间存在强烈的关联,当出射产物在质心系180±对称时,这种关联有一个极大值。以“时间―功率谱”方法分析数据,运用态叠加原理和宇称守恒在弹靶核组成的中间双核系统的演化过程中,可以合理地解释观测到的实验现象,阐述耗散反应中长程角度关联的物理本质。 19F+27Al耗散反应中,同一角度测量到的不同类弹产物的激发函数之间也存在着强烈的关联。这种关联随着耗散程度的加深而减弱,它与耗散反应的“弛豫”过程是一致的。耗散反应中的这种关联起源于弹靶核组成的中间双核系统中不同角动量之间的干涉以及中间双核系统极其缓慢的退相干过程
Resumo:
In this paper, we studied range-based attacks on links in geographically constrained scale-free networks and found that there is a continuous switching of roles of short-and long-range attacks on links when tuning the geographical constraint strength. Our results demonstrate that the geography has a significant impact on the network efficiency and security; thus one can adjust the geographical structure to optimize the robustness and the efficiency of the networks. We introduce a measurement of the impact of links on the efficiency of the network, and an effective attacking strategy is suggested
Resumo:
Amorphous samples of polyether ketone with cardo(PEK-C) have been studied in the solution state by C-13, H-1 high-resolution NMR, The H-1 and C-13 1D NMR spectra were assigned using two dimensional chemical shift correlated spectroscopy, 2D homonuclear correlated(COSY) and heteronuclear correlated (HETCOR) spectroscopy present important information. In this work, the structural units of PEK-C was determined by NMR. For some peaks, these assignments are confirmed by two dimensional long-range heteronuclear correlation experiments, A little modification is made on the original C-13 peak assignments for the main chain, The symmetry and the isotacticity of the chain structure for PEK-C are obvious on NMR data.
Resumo:
Until quite recently our understanding of the basic mechanical process responsible for earthquakes and faulting was not well known. It can be argued that this was partly a consequence of the complex nature of fracture in crust and in part because evidence of brittle phenomena in the natural laboratory of the earth is often obliterated or obscured by other geological processes. While it is well understood that the spatial and temporal complexity of earthquakes and the fault structures emerge from geometrical and material built-in heterogeneities, one important open question is how the shearing becomes localized into a band of intense fractures. Here the authors address these questions through a numerical approach of a tectonic plate by considering rockmass heterogeneity both in microscopic scale and in mesoscopic scale. Numerical simulations of the progressive failure leading to collapse under long-range slow driving forces in the far-field show earthquake-like rupture behavior. $En Echelon$ crack-arrays are reproduced in the numerical simulation. It is demonstrated that the underlying fracturing induced acoustic emissions (or seismic events) display self-organized criticality------from disorder to order. The seismic cycles and the geometric structures of the fracture faces, which are found greatly depending on the material heterogeneity (especially on the macroscopic scale), agree with that observed experimentally in real brittle materials. It is concluded that in order to predict a main shock, one must have extremely detailed knowledge on very minor features of the earth's crust far from the place where the earthquake originated. If correct, the model proposed here seemingly provides an explanation as to why earthquakes to date are not predicted so successfully. The reason is not that the authors do not understand earthquake mechanisms very well but that they still know little about our earth's crust.