84 resultados para lipid nutrition


Relevância:

30.00% 30.00%

Publicador:

Resumo:

An 8-week growth trial investigated the effect of dietary lipid level on growth performance of a carnivorous fish, Chinese longsnout catfish (Leiocassis longirostris Gunther) and an omnivorous fish, gibel carp (Carassius auratus gibelio). For each species, seven isonitrogenous semi-purified diets (455 g kg(-1) crude protein for Chinese longsnout catfish and 385 g kg(-1) crude protein for gibel carp) were formulated to contain 30, 60, 90, 120, 150, 180 or 210 g kg(-1) lipid. For Chinese longsnout catfish, feed intake (FI) decreased with increasing dietary lipid and there was no significant difference in feed intake from 90 to 210 g kg(-1) lipid. Specific growth rate (SGR) increased with dietary lipid level (P < 0.05) and the 150 and 180 g kg(-1) groups were the best. Feed conversion efficiency (FCE), protein retention efficiency (PRE) and energy retention efficiency (ERE) were higher at 180 g kg(-1) lipid. For gibel carp, FI decreased with increased dietary lipid and 180 and 210 g kg(-1) lipid groups showed lower values. SGR increased with dietary lipid level and the 150 and 180 g kg(-1) were the best. FCE was higher at 180 g kg(-1) lipid level. PRE increased with dietary lipid level and there was no significant difference in groups from 120 to 210 g kg(-1) dietary lipid. ERE increased with increasing dietary lipid level, and groups fed 120, 150 and 180 g kg(-1) lipid showed the highest values. In Chinese longsnout catfish, increase in dietary lipid level, resulted in increased carcass dry matter, crude protein, crude lipid and gross energy. In gibel carp, dry matter, crude protein, and crude lipid increased with dietary lipid level. Based on regression between SGR and dietary lipid, dietary lipid requirements for Chinese longsnout catfish and gibel carp were 142.6 and 140.5 g kg(-1), respectively.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background Polyunsaturated fatty acids (PUFAs) modulate immune responses particularly by affecting T cell function and are applied clinically as adjuvant immunosuppressants in the treatment of various inflammatory diseases. However, the molecular mechanisms of PUFA-induced immunosuppressive effects are not yet elucidated. Membrane lipid rafts are functional plasma membrane microdomains characterized by a unique lipid environment. Since lipid interactions are crucial for the formation of lipid rafts, the immunomodulatory effects of PUFAs may be due to changes of fatty acid composition in lipid rafts.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Endogenous yolk nutrients are crucial for embryo and larval development in fish, but developmental behavior of the genes that control yolk utilization remains unknown. Apolipoproteins have been shown to play important roles in lipid transport and uptake through the circulation system. In this study, EcApoC-I, the first cloned ApoC-I in teleosts, has been screened from pituitary cDNA library of female orange-spotted grouper (Epinephelus coioides), and the deduced amino acid sequence shows 43.5% identity to one zebrafish (Danio rerio) hypothetical protein similar to ApoC-I, and 21.2%, 21.7%, 22.5%, 20%, and 22.5% identities to Apo C-I of human (Homo sapiens), house mouse (Mus musculus), common tree shrew (Tupaia glis), dog (Canis lupus familiaris) and hamadryas baboon (Papio hamadryas), respectively. Although the sequence identity is low, amphipathic alpha-helices with the potential to bind to lipid were predicted to exist in the EcApoC-I. RT-PCR analysis revealed that it was first transcribed in gastrula embryos and maintained a relatively stable expression level during the following embryogenesis. During embryonic and early larval development, a very high level of EcApoC-I expression was in the yolk syncytial layer, indicating that it plays a significant role in yolk degradation and transfers nutrition to the embryo and early larva. By the day 7 after hatching, EcApoC-I transcripts were observed in brain. In adult, EcApoC-I mRNA was detected abundantly in brain and gonad. In transitional gonads, the EcApoC-I expression is restricted to the germ cells. The data suggested that EcApoC-I might play an important role in brain and gonad morphogenesis and growth.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A growth trial was conducted to estimate the optimum requirement of dietary available phosphorus (P) for black seabream (Sparus macrocephalus) in indoor net cages (1.5x1.0x1.0 m). Triplicate groups of black seabream (11.45 +/- 0.02 g) were fed diets containing graded levels (0.18, 0.36, 0.54, 0.72, 0.89 and 1.07%) of available P to satiation for 8 weeks. The basal diet (diet 1), containing 0.18% available P, was supplemented with graded levels of monosodium phosphate (NaH2PO4 2H(2)O) to formulate five experimental diets. The fish were fed twice daily (08:00 h and 16:00 h) and reared in seawater (salinity, 26-29 g l(-1)) at a temperature of 28 +/- 1 degrees C. Dissolved oxygen during the experiment was above 5 mg l(-1). The specific growth rate (SGR), weight gain (WG), feed efficiency (FE) and protein efficiency ratio (PER) were all significantly improved by dietary phosphorus up to 0.54% (P<0.05) and then leveled off beyond this level. Hepatosomatic index (HSI) was inversely correlated with dietary phosphorus levels (P< 0.05). Efficiency of P utilization stabled in fish fed diets containing 0.18%-0.54% available P and then decreased dramatically with further supplementation of dietary phosphorus. Body composition analysis showed that the whole-body lipid, ash, calcium and phosphorus contents were all significantly affected by dietary available P concentration (P<0.05), however, no significance were found in whole-body calcium/phosphorus (Ca/P) ratios among all the treatments (P>0.05). Dietary phosphorus levels also affected the mineralization of vertebrae, skin and scale (P<0.05). Ca/P ratios in vertebrae and scale were not influenced by dietary P supplementation, while skin Ca/P ratio increased statistically with dietary available P levels (quadratic effect, P<0.001). The blood chemistry analysis showed that dietary available P had distinct effects on enzyme activities of alkaline phosphatase (ALP) and plasma lysozyme (LSZ), as well as contents of triacyglycerol (TG) and total cholesterol (T-CHO) (P<0.05). Broken-line analysis showed maximum weight gain (WG) was obtained at dietary available P concentrations of 0.55%. Quadratic analysis based on P contents in whole fish, vertebrae or scale indicated that the requirements were 0.81, 0.87 and 0.88%, respectively. Signs of phosphorus deficiency were characterized by poor growth, slightly reduced mineralization and an increase in body lipid content. (C) 2008 Published by Elsevier B.V.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An 8-week growth trial was carried out in a semi-recirculation system at 26 +/- 0.5 degrees C to investigate the optimal dietary carbohydrate-to-lipid (CHO:L) ratio for carnivorous Chinese longsnout catfish (Leiocassis longirostris Gunther). Triplicate tanks of fish were assigned to each of five isocaloric and isonitrogenous diets with different carbohydrate-to-lipid ratios (0.75, 1.48, 1.98, 2.99 and 5.07). The results showed that a higher specific growth rate (SGR) and feed rate (FR) were observed in the fish fed diet ratios of 1.98 CHO:L (P < 0.05). Overloading dietary carbohydrate (5.07 CHO:L ratio) caused skeletal malformations. Apparent digestibility of dry matter (ADC(d)) significantly increased with dietary CHO:L ratio (P < 0.05), while significantly higher apparent digestibility of protein (ADC(p)) and apparent digestibility of energy (ACD(e)) was observed only in the 1.98 CHO:L group (P < 0.05). Whole body contents of dry matter, lipid and energy significantly increased as the CHO:L ratio decreased (P < 0.05). The hepatosomatic index (HSI) was highest at 1.98 CHO:L ratio (P < 0.05). Highest dietary CHO:L ratio resulted in lower liver glycogen, liver lipid, plasma glucose and plasma triacylglycerol (P < 0.05), whereas there was no significant difference in plasma total cholesterol (P > 0.05). High dietary CHO:L ratio caused pathological changes in fish morphology and liver histology. Based on maximum growth, the optimal carbohydrate-to-lipid ratio was 1.98 for Chinese longsnout catfish.