18 resultados para larynx disorder
Resumo:
The stress release model, a stochastic version of the elastic rebound theory, is applied to the large events from four synthetic earthquake catalogs generated by models with various levels of disorder in distribution of fault zone strength (Ben-Zion, 1996) They include models with uniform properties (U), a Parkfield-type asperity (A), fractal brittle properties (F), and multi-size-scale heterogeneities (M). The results show that the degree of regularity or predictability in the assumed fault properties, based on both the Akaike information criterion and simulations, follows the order U, F, A, and M, which is in good agreement with that obtained by pattern recognition techniques applied to the full set of synthetic data. Data simulated from the best fitting stress release models reproduce, both visually and in distributional terms, the main features of the original catalogs. The differences in character and the quality of prediction between the four cases are shown to be dependent on two main aspects: the parameter controlling the sensitivity to departures from the mean stress level and the frequency-magnitude distribution, which differs substantially between the four cases. In particular, it is shown that the predictability of the data is strongly affected by the form of frequency-magnitude distribution, being greatly reduced if a pure Gutenburg-Richter form is assumed to hold out to high magnitudes.
Resumo:
Two-step phase transition model, displacive to order-disorder, is proposed. The driving forces for these two transitions are fundamentally different. The displacive phase transition is one type of the structural phase transitions. We clearly define the structural phase transition as the symmetry broking of the unit cell and the electric dipole starts to form in the unit cell. Then the dipole-dipole interaction takes place as soon as the dipoles in unit cells are formed. We believe that the dipole-dipole interaction may cause an order-disorder phase transition following the displacive phase transition. Both structural and order-disorder phase transition can be first-order or second-order or in between. We found that the structural transition temperatures can be lower or equal or higher than the order-disorder transition temperature. The para-ferroelectric phase transition is the combination of the displacive and order-disorder phase transitions. It generates a variety of transition configurations along with confusions. In this paper, we discuss all these configurations using our displacive to order-disorder two-step phase transition model and clarified all the confusions.
Resumo:
An association of the dopamine receptor D4 (DRD4) gene located on chromosome 11p15.5 and attention deficit/hyperactivity disorder (ADHD) has been demonstrated and replicated by multiple investigators. A specific allele [the 7-repeat of a 48-bp variable number of tandem repeats (VNTR) in exon 3] has been proposed as an etiological factor in attentional deficits manifested in some children diagnosed with this disorder. In the current study, we evaluated ADHD subgroups defined by the presence or absence of the 7-repeat allele of the DRD4 gene, using neuropsychological tests with reaction time measures designed to probe attentional networks with neuroanatomical foci in D4-rich brain regions. Despite the same severity of symptoms on parent and teacher ratings for the ADHD subgroups, the average reaction times of the 7-present subgroup showed normal speed and variability of response whereas the average reaction times of the 7-absent subgroup showed the expected abnormalities (slow and variable responses). This was opposite the primary prediction of the study. The 7-present subgroup seemed to be free of some of the neuropsychological abnormalities thought to characterize ADHD.
Resumo:
Prefrontal impairments have been hypothesized to be most strongly associated with the cognitive and emotional dysfunction in depression. Recently, white matter microstructural abnormalities in prefrontal lobe have been reported in elderly patients with ma
Resumo:
We report a numerical analysis of various types of disorder effects on self-collimated beam in two-dimensional photonic crystal. Finite-difference time-domain (FDTD) method is used to simulate the process by using a pulse propagation technique. The position disorders along the directions parallel and perpendicular to the incidence are considered. We show that random disorder along the perpendicular direction will have a lesser effect on the performance of the dispersion waveguides than those along the parallel direction. Furthermore, the self-collimation waveguide (SCW) has new characteristics when compared with the photonic crystal line defect waveguide. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Molecular beam epitaxy GaAs films on Si, with thicknesses ranging from 0.9-2.0-mu-m, were implanted with Si ions at 1.2-2.6 MeV to doses in the range 10(15)-10(16) cm-2. Subsequent rapid infrared thermal annealing was carried out at 850-degrees-C for 15 s in a flowing N2 atmosphere. Crystalline quality was analyzed by using Rutherfold backscattering/channeling technique and Raman scattering spectrometry. The experimental results show that the recrystallization process greatly depends on the dose and energy of implanted ions. Complete recrystallization with better crystalline quality can be obtained under proper implantation and subsequent annealing. In the improved layer the defect density was much lower than in the as-grown layer, especially near the interface.
Resumo:
We present studies of alloy composition and layer thickness dependences of excitonic linewidths in InGaAs/GaAs strained-layer quantum wells grown by MBE, using both photoluminescence and optical absorption. It is observed that linewidths of exciton spectra increase with indium content and well size. Using the virtual crystal approximation, the experimental data are analyzed. The results obtained show that the alloy disorder is the dominant mechanism for line broadening at low temperature. In addition, it is found that the absorption spectra related to light hole transitions have varied from a peak to a step-like structure as temperature increases. This behavior can be understood by the indirect space transitions of light holes.
Resumo:
Short-range correlations of two-dimensional electrons in a strong magnetic field are shown to be triangular in nature well below half-filling, but honeycomb well above half-filling. The half-filling point is thus proposed, and qualitatively confirmed by three-body correlation calculations, to be a new type of disorder point where short-range correlations change character. A wavefunction study also suggests that nodes become unbound at half-filling. Evidence for incompressibility but deformability of the half-filling state earlier suggested by Fano, Ortolani and Tosatti, is also presented and found to be in agreement with recent experiments.