48 resultados para land cover change
Resumo:
Urbanization can exert a profound influence on land covers and landscape characteristics. In this study, we characterize the impact of urbanization on land cover and lacustrine landscape and their consequences in a large urban lake watershed, Donghu Lake watershed (the largest urban lake in China), Central China, by using Landsat TM satellite images of three periods of 1987, 1993 and 1999 and ground-based information. We grouped the land covers into six categories: water body, vegetable land, forested land, shrub-grass land, open area and urban land, and calculated patch-related landscape indices to analyze the effects of urbanization on landscape features. We overlaid the land cover maps of the three periods to track the land cover change processes. The results indicated that urban land continuously expanded from 9.1% of the total watershed area in 1987, to 19.4% in 1993, and to 29.6% in 1999. The vegetable land increased from 7.0% in 1987, 11.9% in 1993, to 13.9% in 1999 to sustain the demands of vegetable for increased urban population. Concurrently, continuous reduction of other land cover types occurred between 1987 and 1999: water body decreased from 30.4% to 23.8%, and forested land from 33.6% to 24.3%. We found that the expansion of urban land has at least in part caused a decrease in relatively wild habitats, such as urban forest and lake water area. These alterations had resulted in significant negative environmental consequences, including decline of lakes, deterioration of water and air quality, and loss of biodiversity.
Resumo:
Land use and land cover change as the core of coupled human-environment systems has become a potential field of land change science (LCS) in the study of global environmental change. Based on remotely sensed data of land use change with a spatial resolution of 1 km x 1 km on national scale among every 5 years, this paper designed a new dynamic regionalization according to the comprehensive characteristics of land use change including regional differentiation, physical, economic, and macro-policy factors as well. Spatial pattern of land use change and its driving forces were investigated in China in the early 21st century. To sum up, land use change pattern of this period was characterized by rapid changes in the whole country. Over the agricultural zones, e.g., Huang-Huai-Hai Plain, the southeast coastal areas and Sichuan Basin, a great proportion of fine arable land were engrossed owing to considerable expansion of the built-up and residential areas, resulting in decrease of paddy land area in southern China. The development of oasis agriculture in Northwest China and the reclamation in Northeast China led to a slight increase in arable land area in northern China. Due to the "Grain for Green" policy, forest area was significantly increased in the middle and western developing regions, where the vegetation coverage was substantially enlarged, likewise. This paper argued the main driving forces as the implementation of the strategy on land use and regional development, such as policies of "Western Development", "Revitalization of Northeast", coupled with rapidly economic development during this period.
Resumo:
We obtained four phases of land cover spatial data sets by interpreting MSS images of middle and late 1970s and three phases of TM images of late 1980s, 2004 and 2008 based on field investigation in Three Rivers' Source Region. We analyzed the temporal and spatial characteristics of land cover and macro ecological changes in Three Rivers' Source Region in Qinghai-Tibet plateau since middle and late 1970s. Indicated by land cover condition index change rate and land cover change index, land cover and macroscopical ecological condition degenerated (7090 period Zc -0.63, LCCI -0.58)-obviously degenerated (9004 period, Zc -0.94, LCCI -1.76)-slightly meliorated (0408 period, Zc 0.06, LCCI 0.33). This course was jointly driven by climate change, grassland stocking pressure and implement of ecological construction project.
Resumo:
The interactions among industrial development, land use/cover change (LUCC), and environmental effects in Changshu in the eastern coastal China were analyzed using high-resolution Landsat TM data in 1990, 1995, 2000, and 2006, socio-economic data and water environmental quality monitoring data from research institutes and governmental departments. Three phases of industrial development in Changshu were examined (i.e., the three periods of 1990 to 1995, 1995 to 2000, and 2000 to 2006). Besides industrial development and rapid urbanization, land use/cover in Changshu had changed drastically from 1990 to 2006. This change was characterized by major replacements of farmland by urban and rural settlements, artificial ponds, forested and constructed land. Industrialization, urbanization, agricultural structure adjustment, and rural housing construction were the major socio-economic driving forces of LUCC in Changshu. In addition, the annual value of ecosystem services in Changshu decreased slightly during 1990-2000, but increased significantly during 2000-2006. Nevertheless, the local environmental quality in Changshu, especially in rural areas, has not yet been improved significantly. Thus, this paper suggests an increased attention to fully realize the role of land supply in adjustment of environment-friendly industrial structure and urban-rural spatial restructuring, and translating the land management and environmental protection policies into an optimized industrial distribution and land-use pattern.
Resumo:
It is more and more acknowledged that land-use/cover dynamic change has become a key subject urgently to be dealt with in the study of global environmental change. Supported by the Landsat TM digital images, spatial patterns and temporal variation of land-use change during 1995 -2000 are studied in the paper. According to the land-use dynamic degree model, supported by the 1km GRID data of land-use change and the comprehensive characters of physical, economic and social features, a dynamic regionalization of land-use change is designed to disclose the spatial pattern of land-use change processes. Generally speaking, in the traditional agricultural zones, e.g., Huang-Huai-Hai Plains, Yangtze River Delta and Sichuan Basin, the built-up and residential areas occupy a great proportion of arable land, and in the interlock area of farming and pasturing of northern China and the oases agricultural zones, the reclamation I of arable land is conspicuously driven by changes of production conditions, economic benefits and climatic conditions. The implementation of "returning arable land into woodland or grassland" policies has won initial success in some areas, but it is too early to say that the trend of deforestation has been effectively reversed across China. In this paper, the division of dynamic regionalization of land-use change is designed, for the sake of revealing the temporal and spatial features of land-use change and laying the foundation for the study of regional scale land-use changes. Moreover, an integrated study, including studies of spatial pattern and temporal process of land-use change, is carried out in this paper, which is an interesting try on the comparative studies of spatial pattern on change process and the change process of spatial pattern of land-use change.
Resumo:
Decision tree classification algorithms have significant potential for land cover mapping problems and have not been tested in detail by the remote sensing community relative to more conventional pattern recognition techniques such as maximum likelihood classification. In this paper, we present several types of decision tree classification algorithms arid evaluate them on three different remote sensing data sets. The decision tree classification algorithms tested include an univariate decision tree, a multivariate decision tree, and a hybrid decision tree capable of including several different types of classification algorithms within a single decision tree structure. Classification accuracies produced by each of these decision tree algorithms are compared with both maximum likelihood and linear discriminant function classifiers. Results from this analysis show that the decision tree algorithms consistently outperform the maximum likelihood and linear discriminant function classifiers in regard to classf — cation accuracy. In particular, the hybrid tree consistently produced the highest classification accuracies for the data sets tested. More generally, the results from this work show that decision trees have several advantages for remote sensing applications by virtue of their relatively simple, explicit, and intuitive classification structure. Further, decision tree algorithms are strictly nonparametric and, therefore, make no assumptions regarding the distribution of input data, and are flexible and robust with respect to nonlinear and noisy relations among input features and class labels.
Resumo:
China's cultivated land has been undergoing dramatic changes along with its rapidly growing economy and population. The impacts of land use transformation on food production at the national scale, however, have been poorly understood due to the lack of detailed spatially explicit agricultural productivity information on cropland change and crop productivity. This study evaluates the effect of the cropland transformation on agricultural productivity by combining the land use data of China for the period of 1990-2000 from TM images and a satellite-based NPP (net primary production) model driven with NOAH/AVHRR data. The cropland area of China has a net increase of 2.79 Mha in the study period, which causes a slightly increased agricultural productivity (6.96 Mt C) at the national level. Although the newly cultivated lands compensated for the loss from urban expansion, but the contribution to production is insignificant because of the low productivity. The decrease in crop production resulting from urban expansion is about twice of that from abandonment of arable lands to forests and grasslands. The productivity of arable lands occupied by urban expansion was 80% higher than that of the newly cultivated lands in the regions with unfavorable natural conditions. Significance of cropland transformation impacts is spatially diverse with the differences in land use change intensity and land productivity across China. The increase in arable land area and yet decline in land quality may reduce the production potential and sustainability of China's agro-ecosystems. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Over last two decades, numerous studies have used remotely sensed data from the Advanced Very High Resolution Radiometer (AVHRR) sensors to map land use and land cover at large spatial scales, but achieved only limited success. In this paper, we employed an approach that combines both AVHRR images and geophysical datasets (e.g. climate, elevation). Three geophysical datasets are used in this study: annual mean temperature, annual precipitation, and elevation. We first divide China into nine bio-climatic regions, using the long-term mean climate data. For each of nine regions, the three geophysical data layers are stacked together with AVHRR data and AVHRR-derived vegetation index (Normalized Difference Vegetation Index) data, and the resultant multi-source datasets were then analysed to generate land-cover maps for individual regions, using supervised classification algorithms. The nine land-cover maps for individual regions were assembled together for China. The existing land-cover dataset derived from Landsat Thematic Mapper (TM) images was used to assess the accuracy of the classification that is based on AVHRR and geophysical data. Accuracy of individual regions varies from 73% to 89%, with an overall accuracy of 81% for China. The results showed that the methodology used in this study is, in general, feasible for large-scale land-cover mapping in China.
Resumo:
Land-use change is an important aspect of global environment change. It is, in a sense, the direct result of human activities influencing our physical environment. Supported by the dynamic serving system of national resources, including both the environment database and GIS technology, this paper analyzed the land-use change in northeastern China in the past ten years (1990 - 2000). It divides northeastern China into five land-use zones based on the dynamic degree (DD) of land-use: woodland/grassland - arable land conversion zone, dry land - paddy field conversion zone, urban expansion zone, interlocked zone of farming and pasturing, and reclamation and abandoned zone. In the past ten years, land-use change of northeastern China can be generalized as follows: increase of cropland area was obvious, paddy field and dry land increased by 74. 9 and 276. 0 thousand ha respectively; urban area expanded rapidly, area of town and rural residence increased by 76. 8 thousand ha; area of forest and grassland decreased sharply with the amount of 1399. 0 and 1521. 3 thousand ha respectively; area of water body and unused land increased by 148. 4 and 513. 9 thousand ha respectively. Besides a comprehensive analysis of the spatial patterns of land use, this paper also discusses the driving forces in each land-use dynamic zones. The study shows that some key biophysical factors affect conspicuously the conversion of different land- use types. In this paper, the relationships between land- use conversion and DEM, accnmlated temperature(>= 10 degrees C) and precipitation were analysed and represented. We conclude that the land- use changes in northeast China resulted from the change of macro social and economic factors and local physical elements. Rapid population growth and management changes, in some sense, can explain the shaping of woodland/grassland - cropland conversion zone. The conversion from dry land to paddy field in the dry land - paddy field conversion zone, apart from the physical elements change promoting the expansion of paddy field, results from two reasons: one is that the implementation of market-economy in China has given farmers the right to decide what they plant and how they plant their crops, the other factor is originated partially from the change of dietary habit with the social and economic development. The conversion from paddy field to dry land is caused primarily by the shortfall of irrigation water, which in turn is caused by poor water allocation managed by local governments. The shaping of the reclamation and abandoned zone is partially due to the lack of environment protection consciousness among pioneer settlers. The reason for the conversion from grassland to cropland is the relatively higher profits of fanning than that of pasturing in the interlocked zone of farming and pasturing. In northeastern China, the rapid expansion of built-up areas results from two factors: the first is its small number of towns; the second comes from the huge potential for expansion of existing towns and cities. It is noticeable that urban expansion in the northeastern China is characterized by gentle topographic relief and low population density. Physiognomy, transportation and economy exert great influences on the urban expansion.
Resumo:
毛乌素沙地是我国十二大沙漠之一,地处北方干旱半干旱区向亚湿润区过渡地带,长期以来,不合理的人类土地利用,结合当地脆弱的环境生态特征,引起了严重的现代荒漠化过程,是我国北方荒漠化研究的重点地区。本文着重从自然和人文学科密切合作的角度,对毛乌素沙地土地利用/土地覆被变化的内在作用机制进行了研究,得到以下主要结论: 1. 利用多年实地观测数据资料,考察了毛乌素沙地四种主要草地类型代表性植物群落地上生物量响应气候因子波动的变化规律,建立了植物地上生物量对气候因子的逐月回归模型,揭示出如下规律:①各种气候因子对不同类型草地以及同一类型不同生长阶段草地都产生不同的影响作用;②同一气候因子在植物不同生长阶段上,对生物量形成的重要性程度存在差异:③在植物生长期内,每个生长阶段的生物量都对后一时期的生物量产生显著影响,说明植物生长的连续性对于生物量的形成和积累是重要的;④在植物的凋枯期,各种气候因子基本上都不对生物量产生显著影响;⑤水分因子对毛乌素沙地几乎各种类型草地的生物量,都是重要的影响因子,毛乌素沙地降水状况在不同年份的显著波动对草地植物地上生物量的影响,不仅直接构成了土地覆被变化的重要组成部分,而且还影响到土地利用的方式、方法和后果。 2. 在考察毛乌素沙地草地地上生物量对气候因子变化的响应规律中,利用逐月动态回归建模方法改进了传统的累积气候因子回归建模方法。逐月回归模型与累积回归模型的比较显示,逐月动态回归模型的优势表现在三个方面:①可以提供累积回归模型无法揭示的作用规律;②模拟更加精确;③可以预测不同气候条件下群落地上生物量的变化范围。 3. 利用风速、降水和潜在蒸发等气象记录资料,建立了毛乌素沙地气候因子影响沙尘暴频率的作用模型,定量地考察了沙地各处气候因子对沙尘暴频率的影响作用。研究表明,气候因素是导致毛乌素沙地沙尘暴发生的主导原因,在沙地各处,气候因子可以解释沙尘暴频率分布格局总信息的比率分别为:乌审召83.6%,乌审旗77.5%,河南82.4%,鄂托克旗79.8%,新街73.1%,伊金霍洛旗82%。 4. 在定量考察气候因素对沙尘暴频率影响作用的基础上,对影响沙尘暴频率格局的自然和人为因素进行了定量分离,研究表明:人为影响因素对对沙尘暴发生起次要作用,解释沙尘暴频率分布格局信息的比率分别为:乌审召16.4%,乌审旗22.5%,河南17.6%,鄂托克旗20.2%,新街26.9%,伊金霍洛旗18%。 自然和人为因素影响作用的定量分离研究表明,毛乌素沙地人为因素的影响作用表现出空间上的差异性:①从方位上说,呈现自东向中、西部递减的梯度:②从地点上说,城镇附近人为影响作用远高于农村地区;③从土地利用方式上说,农垦种植业区域高于畜牧业区域。 5. 在实地观测基础上,建立了裸露沙面和植被覆盖沙面风蚀输沙率模型,定量考察了植被覆盖率与风蚀输沙率之间的关系。研究表明:当植被覆盖率达到60%以上,可以保护地表土壤使风蚀在大多数条件下不致发生;当覆盖率达到40%,可以使风蚀输沙大为减少;而当植被覆盖率低于10%,植被覆盖基本不能对地表土壤起到有效的防护作用。 6. 应用植被覆盖地表风蚀输沙率模型,考察了沙地不同风速条件下植被有效覆盖率。根据当地气象台站的多年气象记录,沙地最大风速在20m/s左右,这样的风速条件下,保证风蚀不致发生的植被有效覆盖率为65%左右;在沙地常见的大风风速14-16m/s下,植被有效覆盖率大致为50-55%;对于沙地一般的中等风速l0-12m/s.植被有效覆盖率为40%。植被覆盖对风蚀的影响作用也可以理解为,植被覆盖使沙粒起动风速发生了增大效应,研究表明:与裸露沙面沙粒起动风速4.5m/s对照,70%植被覆盖率使起动风速改变为15.4m/s;60%植被覆盖率使起动风速改变为12.1m/s;40%植被覆盖率使起动风速改变为8.Om/s;而在10%植被覆盖条件下,起动风速为5.Om/s,改变量很小,说明植被覆盖的保护作用极其有限。 7. 基于野外实地观测,比较了沙地五种常见植物种和二种人工防护材料防风效应上的差异。研究表明,防风效应由高到低的次序是,沙蒿>芨芨草>杨柴和牛心朴子>沙障>栅栏>旱柳;就乔、灌、草和人工材料而言,防风效应的次序是,灌木植被>草本植被>人工材料>乔木植被。植物和人工防护材料降低风速的比率与风速呈现二次函数关系,不同植物种或人工材料,降低风速比率都表现出不同的规律,在一般情况下,降低风速效应随着风速的增大而降低。 8. 通过不同植物种防风效应的比较研究,对毛乌素沙地植被生态建设的实践有一定的指导意义。毛乌素沙地的植被建设中对植被类型和植物种类的选择,应该遵循如下原则:①选取防风固沙效应好的植物种类;②应该考虑植物水分供给与需求的平衡状况,实行适地适树;③植物防护效应应该与当地风蚀气候在时间上较好地匹配,在春季等风蚀严重季节,植被覆盖应该具有较好的防风效应。 9. 在现实中,各种影响风蚀的因素是同时发挥作用的。将风蚀影响因素分解为风速、湿润度和植被覆盖率(以及植被类型)三个方面,在此基础上,建立了风蚀影响因素的综合作用的概念模型和沙丘活动性指数定量模型。湿润程度低、风速高、植被覆盖率低的地区,是风蚀最为严重的地区;在湿润程度高、风速低、植被覆盖率高的地区,是风蚀最弱的地区;在其他地区,风蚀状况根据三个方面因素的综合状况来决定。 10. 利用风蚀影响因子综合作用的沙丘活动性指数模型,从空间、时间、植被类型变化角度,考察了毛乌素沙地的风蚀变化状况。得到如下结论:①随着空间变化,风速、降水等气候因素也随之存在差异,导致沙丘活动性指数的变化规律是,西北部鄂托克旗沙丘活动性最高,乌审旗次之,其他几个站差别不太显著,这是由各地降水、气温、沙粒粒径等因素共同决定;②随着时间的变化,气候、植被生长等方面的状况随之发生改变,导致沙丘活动性发生变化,春季最高,冬季次之,夏秋季最低:③随着沙丘植被覆盖类型的变化,沙丘活动性也发生显著变化,在一般情况下,乔木覆盖沙丘活动性>草本植物覆盖沙丘>灌木覆盖沙丘。 11. 在实地调查土地利用现实状况及其社会、经济和政策影响因素的基础上,建立了我国北方干旱半干旱区土地利用决策机制的概念模型,分析了与土地利用密切相关的农牧民一政府一环境科学家这三个社会群体对土地利用的立场和影响作用力上的差异,分析了毛乌素沙地土地利用的现状及其影响因素,探讨了现实中不可持续土地利用行为发生的社会、经济和政策原因。 12. 在实地调查基础上,分别利用产出一费用分析法和过程影响因素分析法,建立了毛乌素沙地土地利用经济收益的定量模型。产出一分析研究表明,无论是农垦种植业,还是草地畜牧业,农牧民从这两种土地利用方式都只能获得较低下的经济收益。造成这种状况的原因,主要在于两个方面:一是低下且不断处于波动之中的农牧业产品物价,二是沉重的农牧业税收。 13. 将影响农牧业产出的因素,划分为四个方面:土地面积(牲畜头数)、环境状况、管理水平和利用强度,在此基础上建立了定量的影响作用模型。研究表明:环境状况指数每增加0.1,农牧业经济收益增加26%;管理水平因子每提高0.1,农牧业经济收益增加12.7%;农牧业经济收益最优的土地利用强度在0.4左右,在此之前,随着利用强度的增加,经济收益随之增大,而在此之后,随着利用强度的增大,经济收益逐渐降低,当土地利用强度达到0.9左右时,呈现负的经济收益。 14. 毛乌素沙地实施土地资源可持续利用,必须从技术的革新和社会经济政策等因素的调整两条途径同时入手,二者缺一不可。通过改进和应用节水灌溉、风能光能利用、生物增产技术,尽可能地提高各种资源的利用效率;通过应用免耕或浅耕技术,尽量减轻土地利用对资源和环境的破坏;通过栽培、速生技术,提高植被建设的成效和速度。而通过税收、物价政策的调整,尽可能地提高农牧民经济收益增长的速度,减轻土地利用压力;通过政府与人民之间对话和合作机制的建立,让广大农牧民参与到土地利用的决策和管理的过程中去;通过土地利用管理政策、措施的调整和完善,调动农牧民保护资源的积极性和自觉性;通过激励机制的建立,引导农牧民土地利用向着可持续的方向发展。 15. 实现毛乌素沙地土地资源可持续利用的有效途径,在于这样几个方面:①建立和完善政府及其管理部门与人民之间有效的对话和合作机制,让广大农牧民参与到土地利用决策和管理的过程中去:②实行产业结构调整,转变片面追求经济增长的做法,制订适应当地自然条件和生态特征的发展模式;③降低农牧业税收、稳定并提高农牧业产品的物价,增加农牧民经济收入,减轻土地利用压力;④进一步改进和完善土地利用管理政策和法规;⑤建立有效激励机制,引导农牧民土地利用向着可持续的方向发展:⑥努力改进节水灌溉技术、生物增产技术,提高土地利用的科技水平:⑦改进环境保护和植被建设决策的科学性,提高植被建设的成效。
Resumo:
The historical land use and land cover changes is one of the key issues in LUCC research. However, the achievement of China in this field doesn't match her position in the world yet. And the reliability of the quantitive records in Chinese historical literature, the basic data for historical land use research, has been doubted. This research focuses on Re-Cha-Sui, a typical area for the farming-pastoral region in the north of China, to make a detailed case study in this field. Based on a deep mining and calibration on the data from massive historical documents and land-use surveys, the author gives a detailed analysis on the administrative region evolution, historical population dynamics, reclamation policy, and the land statistic system. According to textual researches, parallel validation and physical geographical analysis, a unified land use series for recent 300 years, which founded on the results of modern land-use surveys, is constructed. And the thematic maps on the cultivation index for different counties in several temporal sections are plotted. Based on the endeavor above, the dynamic of forest and steppe is reconstructed as well. The temporal-spatial patterns of land use/land cover changes in the area is analyzed. And the influence of different driving forces are discussed. The main conclusions of the research are as followed: 1. The quantitive records in literatures on Re-Cha-Sui area are reflection of real amounts of croplands. It is practical to reconstruct a result comparable with the modern land-use surveys, based of a deep mining and considerate validation on historical documents. The unexceptional negative attitude towards the numerical records in historical documents is unnecessary. 2. In recent 300 years, 3 climax of reclamation appeared in Re-Cha-Sui area and altered the pure pastoral area into a farming-pastoral region. The interval were respectively the early time till mid time of the Qing dynasty, the end of the Qing dynasty till early time of the Republic of China(ROC), and the time after A.D. 1949. After the first expansion, the area of cropland in this region reached 2.0 million ha. Among them, Guisui area, which was most densely cultivated, had a cultivation index over 30%, which is similar with modern situation. The second expansion covered broader area, and the amount of cropland reached 3.5 million ha. The increase of farming area after 1949 is due to the recultivation of abandoned farmland. The current area of cropland in this region is 5.6 million ha. In the southern area where the land was reclaimed early, the amount on of the cropland has some fluctuation in 300 years. While in the new reclaimed area in the north, the area of cropland has kept the trend of increasing. 3. Due to the different natural conditions, most forests in Re-Cha-Sui area distribute in the mountain area of North Hebei province, and the upland of West Liaoning province, especially the former, which has a forest coverage near 70%. However, most of these forests were destroyed before the end of the Qing dynasty. In 1949, the natural forest near Chengde was nearly cleared up. They were partly renewed after 1949 due to plantation. 4. In the steppe zone such as northern Rehe, Suiyuan and Chahar, the area of steppe has a negative correlation with that of cropland. With the expansion of cropland, the percentage of steppe has shrunk from over 80% to 53%. In the mountain area of North Hebei province, steppe expanded with the shrinkage of forest, though cropland was expanding. The percentage once reached 60%, and then fell with the renew of forest. However, in the upland of West Liaoning province, the steppe shrink slowly from original 50% to current 26%, with the expansion of cropland. 5. The land use and land cover change in Re-Cha-Sui area in recent 300 years is driven by various factors, including human dimensions such as population, policy of the government, disorder of the society, cultural tradition, and natural factors such as climate change and natural disasters. Among them, pressure from surplus population is the basic driving force.
Resumo:
Four models are employed in the landscape change detection of the newly created wetland. The models include ones for patch connectivity. ecological diversity, human impact intensity and mean center of land cover. The landscape data of the newly created wetland in Yellow River Delta in 1984, 1991, and 1996 are produced from the unsupervised classification and the supervised classification on the basis of integrating Landsat TM images of the newly created wetland in the four seasons of the each year. The result from operating the models into the data shows that the newly created wetland landscape in Yellow River Delta had a great chance. The driving focus of the change are mainly from natural evolution of the newly created wetland and rapid population growth, especially non-peasant population growth in Yellow River Delta because a considerable amount of oil and gas fields have been found in the Yellow River Delta. For preventing the newly created wetland from more destruction and conserving benign Succession of the ecosystems in the newly created wetland, six measures are suggested on the basis of research results. (C) 2003 Elsevier Science B.V. All rights reserved.