243 resultados para ionic resistance
Resumo:
In the present study, a method based on transmission-line mode for a porous electrode was used to measure the ionic resistance of the anode catalyst layer under in situ fuel cell operation condition. The influence of Nafion content and catalyst loading in the anode catalyst layer on the methanol electro-oxidation and direct methanol fuel cell (DMFC) performance based on unsupported Pt-Ru black was investigated by using the AC impedance method. The optimal Nafion content was found to be 15 wt% at 75 degrees C. The optimal Pt-Ru loading is related to the operating temperature, for example, about 2.0 mg/cm(2) for 75-90 degrees C, 3.0 mg/cm2 for 50 degrees C. Over these values, the cell performance decreased due to the increases in ohmic and mass transfer resistances. It was found that the peak power density obtained was 217 mW/cm(2) with optimal catalyst and Nafion loading at 75 degrees C using oxygen. (c) 2005 International Association for Hydrogen Energy. Published by Elsevier Ltd. All rights reserved.
Resumo:
Small amplitude potential step experiments were carried out to study the counterion transfer process in oxidized poly(3-methylthiophene) (PMT) film. The results demonstrate that anion transfer process in PMT film is migration rather than diffusion. A porous metal electrode model-single hole model, which takes into account both the ionic resistance of the film and the uncompensated solution resistance, was found suitable to describe the potential step experiments. According to this model, the ionic resistivity of oxidized PMT film was calculated to be 5.0 x 10(4) OMEGA.cm, and, in turn, the diffusion coefficent of ClO4- ion in PMT film 3.7 x 10(-9) cm2/s.
Resumo:
Lanthanide hexaaluminates including LaMgAl11O19, NdMgAl11O19, SmMgAl11O19 and GdMgAl11O19 were synthesized via Sol-Gel method. Due to the anisotropic crystal growth, these oxides crystallize in the form of platelets and the platelet thickness increases with the decrease of rare-earth ionic radius. It was observed that the thermal-shock resistances of LaMgAl11O19, NdMgAl11O19 and SmMgAl11O19 oxides were superior to 8YSZ as proved by water quenching tests. In addition, the thinner the platelet. the more interstices are retained in the sintered specimen, and the better thermal-shock resistance the oxide has. Based on SEM images, it can be seen that the SmMgAl11O19 sample exhibits a mixture of the intergranular and transgranular fracture after thermal cycling failure.
Resumo:
The ac impedance plots of ( PEO)(16) LiClO4-EC composite polymer electrolytes were studied. The equivalent circuit of stainless steel electrode(SS)/composite electrolyte/SS system was applied to explain the ac impedance plots, The results showed that the equivalent circuit could fit the experimental data very well. The ionic conductivity was calculated using the bulk resistance that was obtained from equivalent circuit. The effect of EC on the conductive behavior was explained by the interactions among different species formed in the composite polymer electrolytes. For lower EC concentration samples, the temperature dependence of conductivity in low temperature range followed Arrhenius type, but when EC concentration was larger than 20%, the temperature dependence of conductivity obeyed the Vogel-Tamman-Fulcher (VTF) equation in all temperature ranges.
Resumo:
Mixed ionic-electronic conducting (MIEC) oxides, SrFeCo0.5Ox, SrCo0.8Fe0.2O3-delta and La0.6Sr0.4Fe0.8Co0.2O3-delta have been synthesized and prepared on yttria-stabilized zirconia as anodes for solid oxide fuel cells. Power output measurements show that the anodes composed of such kinds of oxides exhibit modest electrochemical activities to both H-2 and CH4 fuels, giving maximum power densities of around 0.1 W/cm(2) at 950 degrees C. Polarization and AC impedance measurements found that large activation overpotentials and ohmic resistance drops were the main causes for the relative inferior performance to the Ni-YSZ anode. While interlayered with an Ni-YSZ anode, a significant improvement in the electrochemical performance was observed. in particular, for the SrFeCo0.5Ox oxide interlayered Ni-YSZ anode, the maximum power output reaches 0.25 W/cm2 on CH,, exceeding those of both SrFeCo0.5Ox and the Ni-YSZ, as anodes alone. A synergetic effect of SrFeCo0.5Ox and the Ni-YSZ has been observed. Future work is needed to examine the long-term stability of MIEC oxide electrodes under a very reducing environment. (C) 1999 Elsevier Science B.V. All rights reserved.
Resumo:
A new in situ method was realized by one step laser cladding to produce Ni-base alloy composite coating reinforced by in situ reacted and gradiently distributed TiCp particles. The submicron TiCp particles were formed and uniformly distributed because of the in situ reaction and trapping effect under the rapid solidification condition. And, TiCp particles were of gradient distribution on a macro scale and their volume fraction increased from 1.86% at the layer/substrate interface to a maximum 38.4% at the surface of the layer. Furthermore, the in situ generated TiCp/gamma-Ni interfaces were free from deleterious surface reactions. Additionally, the clad coating also revealed a high microhardness of gradient variation with the layer depth and the superior abrasive wear resistance.
Resumo:
The Electrical Resistance Tomography (ERT) technique possesses great potential in monitoring widely exiting industrial two/multi-phase flow. For vertical pipe flow and inclined pipe flow, some application studies with exciting results have been reported, but there is rarely a paper regarding the application of ERT to horizontal gas/liquid pipe flow. This paper addresses this issue and proposes a smart method, Liquid Level Detection method, to conventional ERT system. The enhanced ERT system using the new method can monitor horizontal pipe flow effectively and its application is no longer restricted by the flow conditions. Some experimental results from monitoring an air/water slug pipe flow are presented.
Resumo:
The characterization of air-water two-phase vertical flow in a 12 m flow loop with 1.5 m of vertical section is studied by using electrical resistance tomography (ERT). By applying a fast data collection to a dual-plane ERT sensor and an iterative image reconstruction algorithm, relevant information is gathered for implementation of flow characteristics, particularly for flow regime recognition. A cross-correlation method is also used to interpret the velocity distribution of the gas phase on the cross section. The paper demonstrates that ERT can now be deployed routinely for velocity measurements and this capability will increase as faster measurement systems evolve.
Resumo:
The effect of diffuse treatment on coating microstructure and oxidation resistance at high-temperature of hot-dip aluminum were studied by means of TEM, SEM and XRD. The results show that, the diffusion temperature has significant effect on structure of coatings and its oxidation resistance. After diffusion at 750 degreesC, the coating consists of thick outer surface layer (Fe2Al5+ FeAl2), thin internal layer (FeAl + stripe FeAl2), and its oxidation resistance is poor. After diffusion at 950 degreesC, the outer surface layer is composed of single FeAl2 phase, the internal layer is composed of FeAl phase, and its oxidation resistance declines due to the occurrence of early stage internal oxidation cracks in the coating. After diffusion at 850 degreesC, the outer surface layer becomes thinner and consists of FeAl2 Fe2Al5(small amount), the internal layer becomes thicker and consists of FeAl+spherical FeAl2, and the spheroidized FeAl2 phase in the internal layer and its existing in FeAl phase steadily improve the oxidation resistance of the coating.
Resumo:
There are very strong interests in improving the high-temperature wear resistance of the y-TiAl intermetallic alloy, especially when applied as tribological moving components. In this paper, microstructure, high-temperature dry sliding wear at 600 degrees C and isothermal oxidation at 1000 degrees C on ambient air of laser clad gamma/W2C/TiC composite coatings with different constitution of Ni-Cr-W-C precursor mixed powders on TiAl alloy substrates have been investigated. The results show that microstructure of the laser fabricated composite coatings possess non-equilibrium microstructure consisting of the matrix of nickel-base solid solution gamma-NiCrAl and reinforcements of TiC, W2C and M23C6 carbides. Higher wear resistance than the original TiAl alloy is achieved in the composite coatings under high-temperature wear test conditions. However, the oxidation resistance of the laser clad gamma/W2C/TiC composite coatings is deceased. The corresponding mechanisms resulting in the above behaviors of the laser clad composite coatings are discussed. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
The thermal conductivity of periodic composite media with spherical or cylindrical inclusions embedded in a homogeneous matrix is discussed. Using Green functions, we show that the Rayleigh identity can be generalized to deal with thermal properties ot these systems. A new calculating method for effective conductivity of composite media is proposed. Useful formulae for effective thermal conductivity are derived, and meanings of contact resistance in engineering problems are explained.
Resumo:
This paper presents a measurement of flow patterns and flow velocities of gas-water two-phase flows based on the technique of electrical resistance tomography (ERT) in a 40m horizontal flow loop. A single-plane and dual-plane ERT sensor on conductive ring technique were used to gather sufficient information for the implementation of flow characteristics particularly flow pattern recognition and air cavity velocity measurement. A fast data collection strategy was applied to the dual-plane ERT sensor and an iterative algorithm was used for image reconstruction. Results, in respect to flow patterns and velocity maps, are reported.
Resumo:
An ionic exclusion-enrichment phenomenon has been found at the ends of a nano-channel when electric-driven fluid passes through a micro-/nano-hybrid channel [1-3]. In our experiments, the hybrid channels are fabricated with two poly-dimethysiloxane (PDMS) monoliths microchannels (100um X20um X 9mm) and a nanoporous polycarbonate nuclear track-etched (PCTE) membrane (with 50nm pores). The flows are driven under different electrical potential and the test liquids with different PH values are used. The ion depletion in the source channel is observed by the MicroPIV system. In addition, the numerical simulations about ionic exclusion-enrichment in the hybrid channel are carried out. Some results are as followed:
Resumo:
The study presented here was carried out to obtain the actual solids flow rate by the combination of electrical resistance tomography and electromagnetic flow meter. A new in-situ measurement method based on measurements of the Electromagnetic Flow Meters (EFM) and Electrical Resistance Tomography (ERT) to study the flow rates of individual phases in a vertical flow was proposed. The study was based on laboratory experiments that were carried out with a 50 mm vertical flow rig for a number of sand concentrations and different mixture velocities. A range of sand slurries with median particle size from 212 mu m to 355 mu m was tested. The solid concentration by volume covered was 5% and 15%, and the corresponding density of 5% was 1078 kg/m(3) and of 15% was 1238 kg/m(3). The flow velocity was between 1.5 m/s and 3.0 m/s. A total of 6 experimental tests were conducted. The equivalent liquid model was adopted to validate in-situ volumetric solids fraction and calculate the slip velocity. The results show that the ERT technique can be used in conjunction with an electromagnetic flow meter as a way of measurement of slurry flow rate in a vertical pipe flow. However it should be emphasized that the EFM results must be treated with reservation when the flow pattern at the EFM mounting position is a non-homogenous flow. The flow rate obtained by the EFM should be corrected considering the slip velocity and the flow pattern.