22 resultados para herbal medcine
Resumo:
Penaeus monodon postlarvae were fed with different percentages (0%, 25%, 50%, 75% and 100%) of the herbal appetizer Zingiber officinalis enriched Artemia. After 30 days of culture (i.e. PL-1-30), a very positive result was found in Z. officinalis-enriched Artemia-fed postlarvae. The unenriched Artemia-fed postlarvae consumed 91.0 mg/animal/30 days of feed, whereas the Z. officinalis-enriched Artemia increased their consumption to 127.9 mg/animal/30 days. A similar pattern was noticed in feed absorbed (110.2 mg), dry weight growth (26.7 mg) and feed catabolized (83.2 mg) in Z. officinalis-enriched Artemia because of enzymatic activities. The conversion efficiency of unenriched postlarva was 17.19%, whereas in 100% Z. officinalis-enriched Artemia, the maximum conversion efficiency was 20.85%. The net production efficiency increased significantly (P < 0.05) to 22% from that of the unenriched Artemia-fed postlarvae. The administration of Z. officinalis in all levels produced significantly (P < 0.05) higher weight gain and specific growth rate. The utilization efficiency of feed increased proportionately to the percentages of Z. officinalis. Digestive enzyme activity (amylase, protease and lipase) increased significantly (P < 0.05) in the 50%, 75% and 100% enrichment. Among the different percentages of enrichment, the 100% Z. officinalis-enriched Artemia-fed postlarvae performed better in the overall status.
Resumo:
A capillary electrophoresis with electrochemical detection(CE-ED) method was developed for the quality analysis of herbal medicine products prepared from the same herb of Herba Sarcandrae: Fufang Caoshanhu tablets, Qingrexiaoyanning capsules, and Xuekang oral liquids. Under the optimal analysis conditions, the low detection limit[1.0x10(-7) mol/L(S/N=3)] and the wide linear range(1.0x10(-7)-1.0x10(-4) mol/L) were obtained for quality standard compound of isofraxidin. The precisions of the peak current and the migration time(as RSDs) for the real sample analysis were 2.0%-2.6%, and 1.2%-1.8% for isofraxidin, respectively.
Resumo:
The molecular spectroscopy (including near infrared diffuse reflection spectroscopy, Raman spectroscopy and infrared spectroscopy) with OPUS/Ident software was applied to clustering ginsengs according to species and processing methods. The results demonstrate that molecular spectroscopic analysis could provide a rapid, nondestructive and reliable method for identification of Chinese traditional medicine. It's found that the result of Raman spectroscopic analysis was the best one among these three methods. Comparing with traditional methods, which are laborious and time consuming, the molecular spectroscopic analysis is more effective.
Resumo:
In the present study, curcumin from Chinese herbal medicine turmeric was determined by capillary electrophoresis with amperometric detection (CE-AD) pretreated by a self-designed, simple, inexpensive solid-phase extraction (SPE) cartridge based on the material of tributyl phosphate resin. An average concentration factor of 9 with the recovery of >80% was achieved when applied to the analysis of curcumin in extracts of turmeric. Under the optimized CE-AD conditions: a running buffer composed of 15 mM phosphate buffer at a pH 9.7, separation voltage at 16 W, injection for 6 s at 9 W and detection at 1.20 V, CE-AD with SPE exhibited low detection limit as 3 - 10(-8) mol/l (SIN = 3), high efficiency of 1.0(.)10(5) N, linear range of 7(.)10(-4) -3(.)10(-6) mol/l (r = 0.9986) for curcumin extracted from light petroleum. The method developed resulted in enhancement of the detection sensitivity and reduction of interference from sample matrix in complicated samples and exhibited the potential application for routine analysis, especially in food, because a relatively complete process of sample treatment and analysis was described.
Resumo:
A highly selective and accurate method based on derivatization with dansyl chloride coupled with liquid chromatography-mass spectrometry has been developed for identification of natural pharmacologically active phenolic compounds in extracts of Lomatogonium rotatum plants (Tibetan herbal medicine) obtained by solid-phase extraction. The number of hydroxyl groups on the dansylated phenols was estimated by LC-MS-MS analysis in positive-ion mode. Dansyl derivatization of the compounds introduced basic secondary nitrogen into the phenolic core structures and this was readily ionized when acidic HPLC mobile phases were used. MS fragmentation of the derivatives generated intense protonated molecular ions of m/z [MH](+) (phenol aglycones were transformed into the corresponding free phenols by cleavage of an aglycone bond). Collision-induced dissociation of the protonated molecule generated characteristic product ions of m/z 234 and 171 corresponding to the protonated 5-(dimethylamino)naphthalene sulfoxide and 5 -(dimethylamino) naphthalene moieties, respectively. Selected reaction monitoring based on the m/z [MH](+) to 234 and 171 transitions was highly specific for these phenolic compounds. Characteristic ions with m/z values of [MH - 234](+), [MH 2 x 234](+), and [MH - 3 x 234](+) were of great importance for estimation of the presence of multihydroxyl groups on the phenolic backbone.
Resumo:
Traditional Chinese medicine (TCM) is a great treasure of China, the analysis of which is an arduous task. The viewpoint that all chemical constituents of Chinese herbal complex prescription should be analyzed as a black box is elucidated for the first time. Intelligent multi-mode multi-column chromatographic system (IMMCC) with its hybrids is the basic method and HPLC Unified Method is the breakthrough for the black box analysis. Dang-Gui-Bu-Xue-Tang was selected as a typical TCM and a systematic separation method from non-aqueous mobile phase to pure water mobile phase was put forward in order to convert unknown sample to known sample. The a, c values and UV spectra of 66 components of Astragalus, 78 components of Angelica and 71 components of Dang-Gui-Bu-Xue-Tang were obtained. Intelligent optimization and peak identification method and software for complex samples were developed and the optimum multi-step multi-binary gradient curve of mobile phase for Astragalus was ascertained. The maximum error and minimum error of predicted retention time for all components of Astragalus are 8.62% and 0.05% respectively. All components of Astragalus were compared with those of Angelica and it is found that many components of Astragalus are the same as those of Angelica, while the contents of these components are different. Many components of Dang-Gui-Bu-Xue-Tang are also the same as those of Astragalus and Angelica with different contents.
Resumo:
The edible blue-green alga, Nostoc sphaeroides Kutzing, is able to form microcolonies and spherical macrocolonies. It has been used as a potent herbal medicine and dietary supplement for centuries because of its nutraceutical and pharmacological benefits. However, limited information is available on the development of the spherical macrocolonies and the environmental factors that affect their structure. This report described the morphogenesis of N. sphaeroides from single trichomes to macrocolonies. During the process, most structural features of macrocolonies of various sizes were dense maculas, rings, the compact core and the formation of liquid core; and the. laments within the macrocolonies showed different lengths and arrays depending on the sizes of macrocolonies. Meanwhile temperature and light intensity also strongly affected the internal structure of macrocolonies. As microcolonies further increased in size to form 30 mm macrocolonies, the colonies differentiated into distinct outer, middle and inner layers. The. laments of the outer layer showed higher maximum photosynthetic rates, higher light saturation point, and higher photosynthetic effciency than those of the inner layer; whereas the. laments of the inner layer had a higher content of chlorophyll a and phycobiliproteins than those of the outer layer. The results obtained in this study were important for the mass cultivation of N. sphaeroides as a nutraceutical product. (c) 2008 National Natural Science Foundation of China and Chinese Academy of Sciences. Published by Elsevier Limited and Science in China Press. All rights reserved.
Resumo:
Successful applications of expanded bed adsorption (EBA) technology have been widely reported in the literature for protein purification. Little has been reported on the recovery of natural products and active components of Chinese herbal preparations using EBA technology. In this study, the hydrodynamic behavior in an expanded bed of cation resin, 001 x 7 Styrene-DVB, was investigated. Ephedrine hydrochloride (EH) was used as a model natural product to test the dynamic binding capacity (DBC) in the expanded bed. EBA of EH directly from a feedstock containing powdered herbs has also been investigated. These particles are different from commercially available expanded bed adsorbents by virtue of their large size (20S to 1030 gm). When the adsorbent bed is expanded to approximately 1.3 to 1.5 times its settled bed height, the axial liquid-phase dispersion coefficient was found to be of the order 10(-5) m(2) s(-1), which falls into the range 1.0 x 10(-6) to 1.0 X 10(-5) m(2) s(-1) observed previously in protein purification. Because of the favorable column efficiency (low axial dispersion coefficient), the recovery yield and purification factor values of EH directly from a feedstock reached 86.5% and 18, respectively. The results suggest that EBA technology holds promise for the recovery of natural products and active components of Chinese herbal preparations.
Resumo:
Immunostimulants are the substances, which enhance the non-specific defence mechanism and provide resistance against the invading pathogenic micro-organism. In order to increase the immunity of shrimps against the WSSV, the methanolic extracts of five different herbal medicinal plants like Cyanodon dactylon, Aegle marmelos, Tinospora cordifolia, Picrorhiza kurooa and Eclipta alba were selected and mixed thoroughly in equal proportion. The mixed extract was supplemented with various concentrations viz. 100 (A), 200 (B), 400 (C), and 800 (D) mg kg(-1) through artificial diets individually. The prepared diets (A-D) were fed individually to WSSV free healthy shrimp Penaeus monodon with an average weight of 8.0 +/- 0.5 g for 25 days. Control diet (E), devoid of herbal extract was also fed to shrimps simultaneously. After 25 days of feeding experiment, the shrimps were challenged with WSSV, which were isolated and propagated from the infected crustaceans. The shrimps succumbed to death within 7 days when fed on no herbal immunostimulant diet (E). Among the different concentrations of herbal immunostimulant supplemented diets, the shrimps fed on diet D (800 mg kg(-1)) significantly (P < 0.0001) had more survival (74%) and reduction in the viral load. Also the better performance of haematological, biochemical and immunological parameters was found in the immunostimulant incorporated diets fed shrimps. The present work revealed that the application of herbal immunostimulants will be effective against shrimp viral pathogenesis and they can be recommended for shrimp culture. (c) 2006 Published by Elsevier Ltd.
Resumo:
Nostoc flagelliforme, which is distributed in arid or semiarid steppes of the west and west-northern parts of China, has been used by the Chinese as a food delicacy and for its herbal values for hundreds of years. However, the resource is being over-exploited and is diminishing, while the market demands are increasing with the economic growth. This review deals mainly with the Chinese studies on the ecology, physiology, reproduction, morphology and culture of this species in an attempt to promote research and development of its cultivation technology.
Resumo:
本论文由四章组成,第一、二、三章为实验论文,分别报道了中药羌活、菊花、全缘叶绿绒蒿的化学成分的高效液相色谱(HPLC)和液相色谱-质谱(LC-MS)联用分析以及挥发油的气相色谱-质谱(GC-MS)联用分析。第四章概述了重要藏药材化学成分的研究进展。 第一章首先对28批不同产地的羌活药材进行了HPLC分析,建立了羌活的指纹图谱。结果表明,不同产地羌活的化学成分基本相似,但是各组分在含量上存在较大差异。其次,对羌活的主要化学组分包括紫花前胡苷、紫花前胡素、6'-O-反式阿魏酸紫花前胡苷、茴香酸对羟基苯乙酯、羌活醇和异欧前胡素进行了定量分析。此外,针对同一产地不同采集时间的羌活挥发油进行系统分析,结果表明它们的化学成分基本相似,主要含有a-蒎烯、b-蒎烯、柠檬烯和龙脑乙酸酯等,只是各组分含量有所变化,这说明采集药材时要注意采集时间。 第二章分别报道了不同产地不同品种菊花非挥发性成分的液相色谱-二极管阵列检测-串联质谱(LC-PDA-MSn)分析和挥发性成分的气相色谱-质谱(GC-MS)联用分析比较。首先通过液相色谱-质谱-串联质谱对各色谱峰进行定性分析,通过与标准品对照,以及UV和MSn提供的结构信息,结合文献报道共鉴定了11个化学成分,包括绿原酸和10个黄酮化合物,并比较了不同品种菊花的化学成分相同之处和不同之处。另外,对七种不同品种不同产地的菊花挥发性成分通过GC-MS分析表明其主要挥发性成分为单萜类、倍半萜类化合物,共有成分樟脑、龙脑和龙脑乙酸酯等,各成分在不同挥发油中的含量变化明显。 第三章为藏药全缘叶绿绒蒿不同部位挥发油成分的气相色谱-质谱(GC-MS)联用分析,比较其挥发油化学成分及其含量变化的异同点。研究结果表明,全缘叶绿绒蒿花精油的化学成分明显多于全草部位,且两者主要成分有较大的差别。 第四章综述了青藏高原重要藏药材化学成分的研究进展。分别对藏药的资源特色和110多种常用重要藏药材的化学成分的研究情况以及藏药未来发展思路进行了阐述,以期对相关的研究提供一些信息。 This dissertation consists of four parts. The first part reports studies on the fingerprint of Notopterygium incisum and N. forbesii by HPLC-PDA-MSn, and on the constitutents of essential oil by GC-MS. The second part elaborates the chemical constitutents of Chrysanthemum L. by LC-MS and GC-MS analysis. The third part reports the chemical compositions of the essential oil from the different parts of Meconopsis integrifolia. The fourth part reviews on the progress of the studies on the chemical constitutents in Tibetan medicines. The first chapter is about HPLC analysis of a traditional Chinese herbal medicine Qiang-huo (Notopterygium incisum and N. forbesii ). Firstly, based on analyzing and contrasting the relative retention time and relative paek area in chromatographic fingerprint, the HPLC chromatographic fingerprint of Notopterygium incisum was established, which can used as a scientific basement for the quality evalution of this herb. Secondly, quantitative analysis were performed on the main chemical constitutents of Notopterygium incisum and N. forbesii including nodakenin, nodakenetin, 6’-O-trans-feruloylnodakenin, p-hydroxypenethylanisate, notopterol and isoimperatorin. The results indicated that the contents were variable related to different growth regions. Lastly, the essential oil of Notopterygium incisum collected in different harvest times is analyzed by GC-MS. The second chapter is about HPLC-MS and GC-MS analysis of several species of Chrysanthemum L. Firstly, eleven compounds including chlorogenic acid and ten flavone compounds were identified in the methanol extract of Chrysanthemum morifolium Ramat. from different regions by HPLC-MS analysis. Secondly, the essential oil of seven different species of Chrysanthemum L.were extracted by steam distillation, and its compositions were isolated and identified by GC-MS. The main active constitutents such as camphor, borneol and bornyl acetate were detected, but the relative content varied notably. The third chapter is about GC-MS analysis of the essential oil from different parts of Meconopsis integrifolia. It indicated great difference of the chemical compositions of their oil in the flowers and residual overground part. The last chapter is a review of the research progress of the Tibetan medicines, which includes their features and their main chemical constitutents.
Resumo:
本论文由四章组成。第一、二和三章分别报道了双花千里光、川芎和宽叶羌活的化学成分研究。从三种药用植物中共分离和鉴定了40 个化学成分,其中8个为新化合物。第四章概述了藳本属植物及日本川芎的化学成分研究进展。 第一章包括三个部分。第一部分报道双花千里光(Senecio dianthus Franch.)地上部分乙醇提取物的化学成分。采用正、反相硅胶柱层析等各种分离方法,从中共分离出8 个艾里莫酚型倍半萜内酯,其中5 个是新化合物,并且有1 个为首次发现的连接了含氮原子取代基的艾里莫酚型倍半萜内酯。它们的结构经MS、IR、NMR及X-单晶衍射等解析方法确定为2b-angeloyloxy-10b-hydroxyeremophil-7(11)-en-8a,12-olide (1)、6b-angeloyloxy-10b-hydroxyeremophil-7(11)-en-8a,12-olide (2)、2b-angeloyloxy-8b,10b- dihydroxyeremophil-7(11)-en-8a,12-olide (3)、2b-angeloyloxy-8a-hydroxyeremophil-7(11),9(10)-dien-8b,12-olide (4)和8b-amino-10b- hydroxyleremophil-7(11)-en-8a,12-olide (5)。这8 个倍半萜内酯经体外生物活性测试表明均具有通过抑制巨噬细胞增殖抵制破骨细胞增生的活性。第二部分对艾里莫酚型倍半萜内酯的质谱裂解规律进行了初步探讨。第三部分报道双花千里光茎、和叶花的挥发油成分分析。采用传统水蒸气蒸馏法分别提取了双花千里光茎、叶和花的挥发油,用气相色谱-质谱联用(GC-MS)技术分别分离鉴定了其化学成分,从茎、叶和花挥发油中各分离和鉴定出70、80 和73 种化学成分,分别占挥发油总量的91.2%、85.7%及93.4%。 第二章包括两个部分。第一部分报道川芎(Ligusticum chuanxiong Hort.)根茎乙醇提取物的化学成分。通过正、反相硅胶柱层析等分离纯化和MS、NMR及X-单晶衍射等解析方法,共分离鉴定了21 个化合物,结构类型分属于苯酞、二聚苯酞、香豆素和脂肪酸类。其中2 个为结构比较新颖的二聚苯酞类化合物:chuanxiongnolide A (19)和chuanxiongnolide B (20),化合物19 的结构经X-单晶衍射得到确证。第二部分报道川芎挥发油的化学成分。采用不同的提取方法(溶剂萃取法、水蒸气蒸馏法、CO2 超临界流体萃取法)提取川芎挥发油,同时采集不同产地(四川彭县、四川郫县、云南鹤庆)及不同品质(川芎、奶芎、苓子)的川芎产品,利用GC-MS 技术分离鉴定其挥发油的化学成分,计算各成分的相对含量,并对比分析其中的异同。 第三章报道宽叶羌活(Notopterygium forbesii Boiss.)根茎化学成分的分离纯化和结构鉴定。通过正、反相硅胶柱层析等分离纯化和MS、NMR 等解析方法,共分离鉴定了13 个化合物,结构类型分属于香豆素、二氢异香豆素、甾体和羧酸类。其中1 个新二氢异香豆素类成分鉴定为6-methoxy-hydrangenol (37)。 第四章概述了藳本属植物及日本川芎化学成分的研究进展。 This dissertation consisted of four chapters. The former three chaptersrespectively elaborated the phytochemical investigation of three herbal medicines:Senecio dianthus Franch., Ligusticum chuanxiong Hort. and Notopterygium forbesiiBoiss.. Forty compounds, including eight new ones, were isolated and identified byspectral and chemical evidence. The fourth chapter elaborated the study progress ofchemical constituents of Ligusticum genus and Cnidium offcinale. The first chapter consisted of three parts. The first part is about the chemicalconstituents of ethanol extraction and essential oils from the aerial parts of S. dianthu.Eight eremophilenolides were isolated and identified. Among them, five ones are newcompounds and one of them is a novel eremophilenolide attched with an amino group.The structures of the new compounds were identified as 2b-angeloyloxy-10b-hydroxyeremophil-7(11)-en-8a,12-olide (1),6b-angeloyloxy-10b-hydroxyeremophil-7(11)-en-8a,12-olide (2),2b-angeloyloxy-8b,10b-dihydroxyeremophil-7(11)-en-8a,12-olide (3),2b-angeloyloxy-8a-hydroxyeremophil-7(11),9(10)-dien-8b,12-olide (4) and8b-amino-10b-hydroxyeremophil-7(11)-en-8a,12-olide (5) by spectral evidence andX-ray crystallography analysis. All the compounds were evaluated for theiranti-osteoclstogenesis activity using a proliferation inhibit assay with microphagecells. The second part elementarily discussed the characteristic fragmentation oferemophilenolides isolated from S. dianthus in ESI-MS.The latter part is about thechemical constituents of essential oil extracted from stems, leaves and flowers of S.dianthus with steam distillation. By the GC-MS analysis, 70, 80 and 73 compoundswere respectively isolated and identified which accounted for more than 91.2%, 85.7% and 93.4% of total essential oil. The second chapter, including two parts, is about the the chemical constituents ofethanol extraction and essential oils from rhizomes of L. chuanxion. In the first part, twenty-one compounds were isolated and iedntified. Two ones are novel dimericphthalides and the structures were suggested as chuanxiongnolide A (19) andchuanxiongnolide B (20) by spectral evidence and confirmed by X-raycrystallography analysis. In the second part, the samples were collected from differentextract techniques (solvent extraction, steam distillation and supercriticalfluid extraction), different habitats (Peng and Pi counties, Sichuan province; Heqing,Yunnan province) and different qualities (Chuanxiong, Naixiong and Lingzi). Thechemical constituents of essential oil from L. chuanxiong were analyzed by GC-MS and were compared each other. The third chapter is about the chemical constituents of rhizomas of N. forbesii,which belongs to a endemic genus of China. Thirteen compounds were isolated andidentified. One of them is a new dihydroisocoumarin and the structure was identifiedas 6-methoxy-hydrangenol (37) by spectral evidence. The fourth chapter is a review on study progress of chemical constituents ofLigusticum species and Cnidium offcinale.
Resumo:
本论文由四部分组成。第一部分报道了佛手参提取物的化学成分研究,建立了活性成分含量测定的高效液相测定和指纹图谱研究,采用液质联用技术鉴定了主要色谱峰;第二部分报道了丹参及其复方制剂的特征图谱研究;第三部分探讨了两面针生物碱的电喷雾质谱裂解规律,并采用液质联用技术分离鉴定了提取物中的多种生物碱。第四部分概述了液质联用在药物代谢研究中的运用。 第一部分包括第一、第二和第三章。第一章针对佛手参(Gymnadeniaconopsea)块茎的甲醇提取物,采用大孔树脂和反相硅胶柱层析等各种分离方法,共分离鉴定出4 个化合物,通过波谱分析将它们的结构确定为dactylorhin B (1)、loroglossin (2)、dactylorhin A (3)和militarine (4)。这4 个化合物均是首次从佛手参中分离得到的琥珀酸葡萄糖苷类成分。第二章采用高效液相色谱法对西藏、四川、河北、青海和尼泊尔等不同地区产的十个佛手参样品进行腺嘌呤核苷和对羟基苯甲醇的定量分析,结果表明这2 个成份可视为佛手参的特征成分,但也注意到产地不同该2 个特征成分的含量也有所不同。第三章采用标准中药指纹图谱相似度计算软件,以10 个佛手参样品HPLC 图谱的平均值为相似性评价对照模板,对10 个样品进行了相似度评价,并经液质联用分析指认了7 个共有峰,分别为腺嘌呤核苷(1)、对羟基苯甲醇(2)、对羟基苯甲醛(3) 、dactylorhin B(4) 、loroglossin(5)、dactylorhin A(6)和militarine(7)。 第二部分包括第四、第五、第六和第七章。第四章运用电喷雾质谱检测了对照药材和五个不同产地的丹参药材中脂溶性和水溶性成分,系统地探讨了多种成分的电喷雾质谱规律,并以对照药材为标准建立了特征指纹图谱。五个产地的药II材通过与对照药材相对比,采用聚类分析的方法,得到了定性的鉴别与判断。并采用液质联用技术对丹参药材提取液中的化学成份进行分析,推测了九个特征峰,并对六样品的液相色谱图进行了聚类分析。第五章探讨了三七皂苷的电喷雾质谱电离和裂解规律,并采用电喷雾质谱法对三七标准药材,血通片中的皂苷成分进行了分析。第六章运用电喷雾质谱研究复方丹参片提取液的特征图谱,并和单味药材丹参和三七的特征图谱进行了对比研究。并运用HPLC-ESI MSn 分析鉴定了复方丹参片提取液中的化学成分,推测了12 个色谱峰。第七章总结了电喷雾质谱和液质联用技术在丹参药材,三七药材及复方丹参制剂中的运用的优势和局限性。 第三部分(第八章)研究了两面针生物碱中二氢白屈菜红碱(1)、二氢两面针碱(2)、8-酮基二氢白屈菜红碱(3)、8-丙酮基二氢两面针碱(4)、两面针碱(5)、和1,3-二(8-二氢两面针碱)丙酮(6)等六个苯并菲啶型生物碱的电喷雾质谱裂解规律,其中二氢两面针碱和二氢白屈菜红碱,8-丙酮基二氢两面针碱和8-酮基二氢白屈菜红碱是两对二个甲氧基分别在C-9 和C-10,C-10 和C-11 的同分异构体。实验结果表明,在相同的碰撞能下,这类位置异构体的ESI MS2 质谱二级碎片离子的相对峰度存在很大差异,这可以用于区分该类同分异构体,采用液-质联用可以对两面针的总生物碱提取物中的这些同分异构体加于区分。同时在本实验采用的液相色谱条件下,多种生物碱得到较好的分离,通过和对照品的保留时间,紫外吸收光谱及电喷雾质谱图对照,鉴定了11 个主要色谱峰。 第四部分(第九章)对液质联用技术在药物代谢中的运用进行了综述。 This dissertation consisted of four sections. The first two sections elaborated thephytochemical investigation of the rhizomes Gymnadenia conopsea R. Br., methoddevelopment for rapid identifying and qutifying the chemical condtituent of thistibetant medicine, and the chemical fingerprint analysis of rhizomes of G. conopsea,Salviae miltiorrhiza and P. notoginseng. The third section studied the fragmentationmechanism of six alkaloids from Zanthoxylum nitidium and method development forrapid identifying varieties of alkaloids from the extract of this herbal medicine. Thefourth section reviewed HPLC- MS method in drug metabolism studies. The first section consisted of chapters 1, 2, 3. Chapter 1 elaborated the phytochemicalinvestigation of Gymnadenia conopsea R. Br. Four succinate derivative esters wereisolated from the methanol extract of the rhizomes of G. conopsea through repeatedcolumn chromatography on normal and reversed phase silica gel, their structures weredetermined by ESI-MS, 1D and 2D NMR evidence. They were firstly discoveredfrom this species. In chapter 2, a high-performance liquid chromatography.diodearray detection (HPLC-DAD) method has been firstly developed for quantitation oftwo characteristic constituents, adenosine and 4-hydroxybenzyl alcohol, from theextract of rhizomes of G. conopsea. All 10 samples of G. conopsea contained differentamount of adenosine and 4-hydroxybenzyl alcohol. Adenosine and the4-hydroxybenzyl alcohol can be applied in identification and quality control for theroots of G. conopsea. In chapter 3, a high-performance liquid chromatography.diodearray detection.tandem mass spectrometry (HPLC-DAD-MSn) method has been firstly developed for chemical fingerprint analysis of rhizomes of G. conopsea andrapid identification of major compounds in the fingerprints. Comparing the UV andMS spectra with those of authentic compounds, seven main peaks in the fingerprintswere identified as adenosine, 4-hydroxybenzyl alcohol, 4-hydroxybenzyl aldehyde,dactylorhin B, loroglossin, dactylorhin A and militarine. The Computer AidedSimilarity Evaluation System for Chromatographic Fingerprint of TraditionalChinese Medicine (CASES) was employed to evaluate the similarities of 10 samplesof the rhizomes of G. conopsea collected from Sichuan, Qinghai and Hebei provincesand Tibet autonomous region of China, and Nepal. These samples from differentsources had similar chemical fingerprints to each other. The second section consisted of chapters 4, 5, 6 and 7. In chapter 4,both thecharacteristic spectra of liposoluble tanshinones and aqueous-soluble salvianolic acidswere established by the electrospray ionization mass spectrometry (ESI MS)technique and the differences between standard and crude rhizomes of Salviaemiltiorrhiza Bge. from 5 sources were analyzed. The law of electrospray ion trap mass(ESI ITMS) of typical tanshinones and salvianolic acids is studied.The analysis of the chemical constituent of rhizomes of Salviae miltiorrhiza Bge. byliquid chromatography coupled with mass spectrum (LC/MS) technique wasestablished,and the distances among standard herb and crude herb from 5 sourceswere calculated by clustering analysis. According the DAD spectra and MS2 data,9tanshinones could be speculated. In chapter 5, the character spectra of total saponinsin P. notoginseng extracts were established by ESI ITMS and selective ion monitoring(SIM) technology. The law of notoginsenosides by ESI MS2 was studied. In chapter 6,the characteristic spectra of Compound Danshen Tablet established and compared byESI-MS and HPLC/DAD/MS, 6 known tanshinones and 3 saponins were speculated.In chapter 7, the advantage and disadvantage of the strategy, using the ESI ITMS andLC/MS techniques for study of characteristic spetra of danshen and Compound Danshen Tablet, were summerized. The third section (chapter 8) studied the fragmentation mechanism of six alkaloids,dihydronitidine, dihydrochelerythrine, 8-acetonyl dihydronitidine,8-acetonyldrochelerythrine, nitidine and 1,3-bis (8-dihydronitidinyl)-acetone, by ESIMSn. Tandem mass spectrometry experiments indicated that different substitutionsites of the methoxyl groups at C-9 and C-10 or at C-10 and C-11 determined thedifferent abundances of the MS2 fragmentation ions using the same collision energy.According to the different abundances of MS2 product ions, positional isomericbenzo[c] phenanthridine alkaloids can be differentiated. Moreover, ten constituents inthe crude alkaloids extract from the roots of Zanthoxylum nitidium were rapidlyidentified by high-performance liquid chromatography coupled with tandem massspectrometry (HPLC-MSn), through comparing the retention times and ESI MSn spectra with the authentic standards. The fourth section (chapter 9) is a review on HPLC-MS method development in drug metabolism studies.