42 resultados para functional resonance accident model
Resumo:
现场总线在通信传输过程中,会受到各种通信故障的影响,而现场总线与功能安全的结合可降低这种影响。该文描述EPA功能安全通信模型,针对通信传输过程中可能出现的通信错误,采用时间戳、序列号、CRC校验等功能安全通信技术。给出EPA功能安全协议层的报文结构,阐述功能安全协议层的具体实现过程。
Resumo:
We explore production mechanism and final state interaction in the pp -> nK(+)Sigma(+) channel based on the inconsistent experimental data published respectively by COSY-11 and COSY-ANKE. The scattering parameter a > 0 for n Sigma(+) interaction is favoured by large near-threshold cross section within a nonrelativistic parametrization investigation, and a strong n Sigma(+) interaction comparable to pp interaction is also indicated. Based on this analysis we calculate the contribution from resonance Delta*(1920) through pi(+) exchange within resonance model, and the numerical result suggests a rather small near-threshold total cross section, which is consistent with the COSY-ANKE data. With an additional sub-threshold resonance Delta*(1620), the model gives a much better description to the rather large near-threshold total cross section published by COSY-11
Resumo:
Using a refined two-dimensional hybrid-model with self-consistent microwave absorption, we have investigated the change of plasma parameters such as plasma density and ionization rate with the operating conditions. The dependence of the ion current density and ion energy and angle distribution function at the substrate surface vs. the radial position, pressure and microwave power were discussed. Results of our simulation can be compared qualitatively with many experimental measurements.
Resumo:
Potential energy can be approximated by ‘‘pair-functional’’ potentials which is composed of pair potentials and embedding energy. Pair potentials are grouped according to discrete directions of atomic bonds such that each group is represented by an orientational component. Meanwhile, another kind of component, the volumetric one is derived from embedding energy. Damage and fracture are the changing and breaking of atomic bonds at the most fundamental level and have been reflected by the changing of these components’ properties. Therefore, material is treated as a component assembly, and its constitutive equations are formed by means of assembling these two kinds of components’ response functions. This material model is referred to as the component assembling model. Theoretical analysis and numerical computing indicate that the proposed model has the capacity of reproducing some results satisfactorily, with the advantages of physical explicitness and intrinsic induced anisotropy, etc.
Resumo:
Damage-induced anisotropy of quasi-brittle materials is investigated using component assembling model in this study. Damage-induced anisotropy is one significant character of quasi-brittle materials coupled with nonlinearity and strain softening. Formulation of such complicated phenomena is a difficult problem till now. The present model is based on the component assembling concept, where constitutive equations of materials are formed by means of assembling two kinds of components' response functions. These two kinds of components, orientational and volumetric ones, are abstracted based on pair-functional potentials and the Cauchy - Born rule. Moreover, macroscopic damage of quasi-brittle materials can be reflected by stiffness changing of orientational components, which represent grouped atomic bonds along discrete directions. Simultaneously, anisotropic characters are captured by the naturally directional property of the orientational component. Initial damage surface in the axial-shear stress space is calculated and analyzed. Furthermore, the anisotropic quasi-brittle damage behaviors of concrete under uniaxial, proportional, and nonproportional combined loading are analyzed to elucidate the utility and limitations of the present damage model. The numerical results show good agreement with the experimental data and predicted results of the classical anisotropic damage models.
Resumo:
Surface plasmon resonance (SPR) technology and the Biacore biosensor have been widely used to measure the kinetics of biomolecular interactions in the fluid phase. In the past decade, the assay was further extended to measure reaction kinetics when two counterpart molecules are anchored on apposed surfaces. However, the cell binding kinetics has not been well quantified. Here we report development of a cellular kinetic model, combined with experimental procedures for cell binding kinetic measurements, to predict kinetic rates per cell. Human red blood cells coated with bovine serum albumin and anti-BSA monoclonal antibodies (mAbs) immobilized on the chip were used to conduct the measurements. Sensor-grams for BSA-coated RBC binding onto and debinding from the anti-BSA mAb-immobilized chip were obtained using a commercial Biacore 3000 biosensor, and analyzed with the cellular kinetic model developed. Not only did the model fit the data well, but it also predicted cellular on and off-rates as well as binding affinities from curve fitting. The dependence of flow duration, flow rate, and site density of BSA on binding kinetics was tested systematically, which further validated the feasibility and reliability of the new approach. Crown copyright (c) 2008 Published by Elsevier Inc. All rights reserved.
Resumo:
Material potential energy is well approximated by '' pair-functional '' potentials. During calculating potential energy, the orientational and volumetric components have been derived from pair potentials and embedding energy, respectively. Slip results in plastic deformation, and slip component has been proposed accordingly. Material is treated as a component assembly, and its elastic, plastic and damage properties are reflected by different components respectively. Material constitutive relations are formed by means of assembling these three kinds of components. Anisotropy has been incorporated intrinsically via the concept of component. Theoretical and numerical results indicate that this method has the capacity of reproducing some results satisfactorily, with the advantages of physical explicitness, etc. (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Based on the principle given in nonlinear diffusion-reaction dynamics, a new dynamic model for dislocation patterning is proposed by introducing a relaxation time to the relation between dislocation density and dislocation flux. The so-called chemical potential like quantities, which appear in the model can be derived from variation principle for free energy functional of dislocated media, where the free energy density function is expressed in terms of not only the dislocation density itself but also their spatial gradients. The Linear stability analysis on the governing equations of a simple dislocation density shows that there exists an intrinsic wave number leading to bifurcation of space structure of dislocation density. At the same time, the numerical results also demonstrate the coexistence and transition between different dislocation patterns.
Resumo:
Using a 2-D hybrid model, the authors have found that external currents play an important role in the plasma parameters in the reactor. The plasma density, temperature and electrostatic potential would be significantly influenced by the applied external currents.
Resumo:
Based on the computer integrated and flexible laser processing system, an intelligent measuring sub-system was developed. A novel model has been built up to compensate the deviations of the main frame-structure, and a new 3-D laser tracker system is applied to adjust the accuracy of the system. To analyze the characteristic of all kind surfaces of automobile outer penal moulds and dies, classification of types of the surface、brim and ridge(or vale) area to be measured and processed has been established, resulting in one of the main processing functions of the laser processing system. According to different type of surfaces, a 2-D adaptive measuring method based on B?zier curve was developed; furthermore a 3-D adaptive measuring method based on Spline curve was also developed. According to the laser materials processing characteristics and data characteristics, necessary methods have been developed to generate processing tracks, they are explained in details. Measuring experiments and laser processing experiments were carried out to testify the above mentioned methods, which have been applied in the computer integrated and flexible laser processing system developed by the Institute of Mechanics, CAS.
Resumo:
Damage-induced anisotropy of quasi-brittle materials is investigated using component assembling model in this study. Damage-induced anisotropy is one significant character of quasi-brittle materials coupled with nonlinearity and strain softening. Formulation of such complicated phenomena is a difficult problem till now. The present model is based on the component assembling concept, where constitutive equations of materials are formed by means of assembling two kinds of components' response functions. These two kinds of components, orientational and volumetric ones, are abstracted based on pair-functional potentials and the Cauchy - Born rule. Moreover, macroscopic damage of quasi-brittle materials can be reflected by stiffness changing of orientational components, which represent grouped atomic bonds along discrete directions. Simultaneously, anisotropic characters are captured by the naturally directional property of the orientational component. Initial damage surface in the axial-shear stress space is calculated and analyzed. Furthermore, the anisotropic quasi-brittle damage behaviors of concrete under uniaxial, proportional, and nonproportional combined loading are analyzed to elucidate the utility and limitations of the present damage model. The numerical results show good agreement with the experimental data and predicted results of the classical anisotropic damage models.
Resumo:
The potential energy in materials is well approximated by pair functional which is composed of pair potentials and embedding energy. During calculating material potential energy, the orientational component and the volumetric component are derived respectively from pair potentials and embedding energy. The sum of energy of all these two kinds of components is the material potential. No matter how microstructures change, damage or fracture, at the most level, they are all the changing and breaking atomic bonds. As an abstract of atomic bonds, these components change their stiffness during damaging. Material constitutive equations have been formulated by means of assembling all components' response functions. This material model is called the component assembling model. Theoretical analysis and numerical computing indicate that the proposed model has the capacity of reproducing some results satisfactorily, with the advantages of great conceptual simplicity, physical explicitness, and intrinsic induced anisotropy, etc.
Resumo:
The osteocyte network is recognized as the major mechanical sensor in the bone remodeling process, and osteocyte-osteoblast communication acts as an important mediator in the coordination of bone formation and turnover. In this study, we developed a novel 3D trabecular bone explant co-culture model that allows live osteocytes situated in their native extracellular matrix environment to be interconnected with seeded osteoblasts on the bone surface. Using a low-level medium perfusion system, the viability of in situ osteocytes in bone explants was maintained for up to 4 weeks, and functional gap junction intercellular communication (GJIC) was successfully established between osteocytes and seeded primary osteoblasts. Using this novel co-culture model, the effects of dynamic deformational loading, GJIC, and prostaglandin E-2 (PGE(2)) release on functional bone adaptation were further investigated. The results showed that dynamical deformational loading can significantly increase the PGE(2) release by bone cells, bone formation, and the apparent elastic modulus of bone explants. However, the inhibition of gap junctions or the PGE(2) pathway dramatically attenuated the effects of mechanical loading. This 3D trabecular bone explant co-culture model has great potential to fill in the critical gap in knowledge regarding the role of osteocytes as a mechano-sensor and how osteocytes transmit signals to regulate osteoblasts function and skeletal integrity as reflected in its mechanical properties.
Resumo:
A dynamic model for the ice-induced vibration (IIV) of structures is developed in the present study. Ice properties have been taken into account, such as the discrete failure, the dependence of the crushing strength on the ice velocity, and the randomness of ice failure. The most important prediction of the model is to capture the resonant frequency lock-in, which is analog to that in the vortex-induced vibration. Based on the model, the mechanism of resonant IIV is discussed. It is found that the dependence of the ice crushing strength on the ice velocity plays an important role in the resonant frequency lock-in of IIV. In addition, an intermittent stochastic resonant vibration is simulated from the model. These predictions are supported by the laboratory and field observations reported. The present model is more productive than the previous models of IIV.
Resumo:
The local structure of Na-Al-P-O-F glasses, prepared by a novel sol-gel route, was extensively investigated by advanced solid-state NMR techniques. Al-21{F-19} rotational echo double resonance (REDOR) results indicate that the F incorporated into aluminophosphate glass is preferentially bonded to octahedral Al units and results in a significant increase in the concentration of six-coordinated aluminum. The extent of Al-F and Al-O-P connectivities are quantified consistently by analyzing Al-27{P-31} and Al-21{F-19} REDOR NMR data. Two distinct types of fluorine species were identified and characterized by various F-19{Al-27}, F-19{Na-23}, and F-19{P-31} double resonance experiments, which were able to support peak assignments to bridging (Al-F-Al, -140 ppm) and terminal (Al-F, -170 ppm) units. On the basis of the detailed quantitative dipole-dipole coupling information obtained, a comprehensive structural model for these glasses is presented, detailing the structural speciation as a function of composition.