486 resultados para flufenamate-sensitive electrode
Resumo:
Label free electrochemiluminescence (ECL) DNA detection based on catalytic guanine and adenine bases oxidation using tris(2,2'-bipyridyl)ruthenium(II) [Ru(bpy)(3)(2+)] modified glassy carbon (GC) electrode was demonstrated in this work. The modified GC electrode was prepared by casting carbon nanotubes (CNT)/Nafion/Ru(bpy)(3)(2+) composite film on the electrode surface. ECL signals of doublestranded DNA and their thermally denatured counterparts can be distinctly discriminated using cyclic voltammetry (CV) with a low concentration (3.04 x 10(-8) mol/L for Salmon Testes-DNA). Most importantly, sensitive single-base mismatch detection of p53 gene sequence segment was realized with 3.93 x 10(-10) mol/L employing CV stimulation (ECL signal of C/A mismatched DNA oligonucleotides was 1.5-fold higher than that of fully base-paired DNA oligonucleotides). Label free, high sensitivity and simplicity for single-base mismatch discrimination were the main advantages of the present ECL technique for DNA detection over the traditional DNA sensors.
Resumo:
The electrochemistry and electrogenerated chemilurninescence (ECL) of tris(2,2-bipyridyl)ruthenium(II) ion-exchanged in Eastman-AQ-carbon nanotube (CNT) composite films were investigated at a glassy carbon (GC) electrode. Eastman-AQ55D is a poly (ester sulfonic acid) cation exchanger available in a commercial dissolved form. It is much more hydrophilic than Nafion due to its unique structure, so Ru(bpy)(3)(2+) does not diffuse into the hydrophobic region where it may lose its electroactivity as that in Nafion. The interfused CNT could act as electronic wires that connect the electrode with Ru(bpy)(3)(2+), which made the composite film much more electronically which finally led to the increasing of Ru(bpy)(3)(2+) conductive. Besides, the negatively charged CNT could also absorb some Ru(bpy)(3)(2+). Moreover, the strong electrostatic interaction between AQ and Ru(bpy)(3)(2+) made the composite films much more stable. The combination of AQ and CNT brings excellent sensitivity with the detection limit as low as 3 x 10(-11) M for TPA.
Resumo:
A new liquid chromatography electrochemical (LCEC) scheme for glucose sensing has been developed on the basis of a Prussian Blue chemically modified electrode (CME) of novel construction and characterized in terms of various experimental parameters by the flow injection analysis (FIA) technique. Unique hydrodynamic voltammograms were obtained for the first time at the CME in the flow-through amperometric detection of glucose, and subsequently both anodic and cathodic peaks could be expected on monitoring the operating potential in the modest positive or negative region. The unique pH dependence on the CME response towards glucose makes it perfectly compatible with conventional reversed phase liquid chromatography systems. On the basis of these features, practical application in glucose LCEC detection has been effectively performed; a linear response range over three orders of magnitude and a detection limit of subpicomole level were readily obtained. The capability of the established LCEC mode in the direct sensing of urinary glucose has been demonstrated.
Resumo:
A NADH and glucose biosensor based on thionine cross-linked multiwalled carbon nanotubes (MWNTs) and Au nanoparticles (Au NPs) multilayer functionalized indium-doped tin oxide (ITO) electrode were presented in this paper. The effect of light irradiation on the enhancement of bioelectrocatalytic processes of the biocatalytic systems by the photovoltaic effect was investigated.
Resumo:
Here we investigated the analytical performances of the bismuth-modified zeolite doped carbon paste electrode (BiF-ZDCPE) for trace Cd and Pb analysis. The characteristics of bismuth-modified electrodes were improved greatly via addition of synthetic zeolite into carbon paste. To obtain high reproducibility and sensitivity, optimum experimental conditions for bismuth deposition Were Studied.
Resumo:
Highly sensitive amperometric detection of dihydronicotinamide adenine dinucleotide (NADH) by using novel synthesized carbon nanofibers (CNFs) without addition of any mediator has been proposed. The CNFs were prepared by combination of electrospinning technique with thermal treatment method and were applied without any oxidation pretreatment to construct the electrochemical sensor. In amperometric detection of NADH, a linear range up to 11.45 mu M with a low detection limit of 20 nM was obtained with the CNF-modified carbon paste electrode (CNF-CPE).
Resumo:
In this paper, we attempt to develop a sensitive detection method for glucose with the combination of the unique optical property of quantum dots and the specificity of enzymatic reactions. With glucose and hydroquinone as substrates, benzoquinone that intensively quenches the photoluminescence of quantum dots can be produced via the catalysis of bienzyme (glucose oxidase and horseradish peroxidase) system. A relatively low detection limit of 1.0 x 10(-8) mol/L can be achieved. Two linear ranges from 1.0 x 10(-6) to 1.5 x 10(-4) M and from 1.5 x 10(-4) to 1.0 x 10(-3) M were obtained.
Resumo:
A novel electrochemiluminescence (ECL) aptasensor was proposed for sensitive and cost-effective detection of the target thrombin adopted an aptamer-based sandwich format. To detect thrombin, capture aptamers; labeled with gold nanoparticles (AuNPs) were first immobilized onto the thio-silanized ITO electrode surface through strong Au-S bonds. After catching the target thrombin, signal aptamers; tagged with ECL labels were attached to the assembled electrode surface. As a result, an AuNPs-capture-aptamer/thrombin/ECL-tagged signal-aptamer sandwich type was formed.
Resumo:
A label-free and highly sensitive impedimetric aptasensor based on a polyamidoamine dendrimer modified gold electrode was developed for the determination of thrombin. Amino-terminated polyamidoamine dendrimer was firstly covalently attached to the cysteine functionalized gold electrode through glutaraldehyde coupling. Subsequently, the dendrimer was activated with glutaraldehyde, and amino-modified thrombin aptamer probe was immobilized onto the activated dendrimer monolayer film. The layer-by-layer assembly process was traced by surface plasmon resonance and electrochemical impedance spectroscopy.
Resumo:
In this paper, a simple, label-free and regenerative method was proposed to study the interaction between aptamer and small molecule by using methylene blue (MB+) as an electrochemical indicator. A thiolated capture probe containing twelve bases was firstly self-assembled on gold electrode by gold-sulfur affinity. Aptamer probe containing thirty two bases, which was designed to hybridize with capture DNA sequence and specifically recognize adenosine, was then immobilized on the electrode surface by hybridization reaction. MB+ was abundantly adsorbed on the aptamer probe by the specific interaction between MB+ and guanine base in aptamer probe. MB+-anchored aptamer probe can be forced to dissociate from the sensing interface after adenosine triggered structure switching of the aptamer. The peak current of MB+ linearly decreased with the concentration of adenosine over a range of 2 x 10 (8)- x 10 (6) M with a detection limit of 1 x 10 (8) M. In addition, we examined the selectivity of this electrochemical biosensor for cytidine, uridine and guanosine that belonged to the nucleosides family and possessed 1 similar structure with adenosine.
Resumo:
In this article, we report the effects of the thickness of metal and oxide layers of the Al/WO3/Au interconnecting structure on the electrical and optical characteristics of the and bottom units of the two-unit stacked organic-light-emitting-devices (OLEDs). It is found that light emission performance of the upper unit is sensitive to the transmittance of semitransparent Al/WO3/Au structure, which can be improved by changing the thickness of each layer of the Al/WO3/Au structure. It is important to note that the introduction WO3 between Al and Au significantly enhances the current efficiency of both the upper and bottom units with respect to that of the corresponding Al/Au structure without WO3. In addition, the emission spectra of both the upper and bottom units are narrower than that of the control device due to microcavity effect. Our results indicate that the All WO3/Au interconnecting structure is a good candidate for fabricating independently controllable high efficiency stacked OLEDs.
Resumo:
A simple, large scale, and one-step process for the preparation of tris(2,2'-bipyridyl)ruthenium(I) (Ru(bpy)(3)(2+)) doped SiO2@carbon nanotubes (MVNTs) coaxial nanocable used for an ultrasensitive electrochemiluminescence (ECL) is presented for the first time. More importantly, a directly coated as-formed functional material on ITO electrode surface exhibits excellent ECL behavior, good stability, and high sensitivity in the presence of tripropylamine (TPA). This novel functional material will find potential applications in biosensor, electrophoresis and electroanalysis.
Resumo:
The hydrophobic carbon nanotubes-ionic liquid (CNTs-IL) get forms a stable modified film on hydrophobic graphite electrode surface. Laccase immobilized on the CNTs-IL gel film modified electrode shows good thermal stability and enhanced electrochemical catalytic ability. The optimal bioactivity occurs with increasing temperature and this optimum is 20 degrees C higher in comparison to free laccase. The improvement of laccase thermal stability may be due to the microenvironment of hydrophobic CNTs-IL gel on graphite electrode surface. On the other hand, the sensitive detection of oxygen has been achieved due to the feasibility of oxygen reduction by both of laccase and nanocomposite of CNTs-IL gel. Furthermore, the laccase hybrid nanocomposite also shows the fast electrochemical response and high sensitivity to the inhibitors of halide ions with the approximate IC50 of 0.01, 4.2 and 87.5 mM for the fluoride, chloride and bromide ions, respectively. It implies the feasibility of laccase modified electrode as an inhibition biosensor to detect the modulators of laccase.