173 resultados para failure wave
Resumo:
用高速阴影摄影技术研究了爆轰加载下K9 玻璃样品中波的传播和压缩区内损伤破坏的物理图象 和规律。实验中观测到冲击波阵面后有一个移动速度为2. 1~2. 2 mm/μs 的黑色阴影区边界,即失效波(Failure wave) ;实验发现只有当冲击载荷接近材料的HEL 时,在冲击波和失效波之间的区域才有少量的微裂纹成 核和长大,而在冲击载荷较低时却没有观察到;同时实验中观测到失效波萌生于被撞击面,并在两块玻璃的交 界面上观测到失效波的再生。这些结果表明失效波的产生基本与冲击相变无关,主要与玻璃样品表面的初始 损伤有关,换言之,失效波是玻璃样品表面微裂纹在冲击波作用下失稳扩展造成的。
Resumo:
用高速阴影摄影技术研究了爆轰加载下K9玻璃样品中波的传播和压缩区内损伤破坏的物理图象和规律。实验中观测到冲击波阵面后有一个移动速度为2.1mm/μs~2.2mm/μs的黑色阴影区边界,即失效波(Failure wave);实验发现只有当冲击载荷接近材料的HEL时,在冲击波 和失效波之间的区域才有少量的微裂纹成核和长大,而在冲击载荷较低时却没有观察到;同时实验中观测到失效波萌生于被撞击面,并在两块玻璃的交界面上观测到失效波的再生。这些结果表明失效波的产生基本与冲击相变无关,主要与玻璃样品表面的初始损伤有关。
Resumo:
本文首先回顾了失效波的研究进展和存在的问题,然后在现有实验手段改进的基础上对目前失效波研究中尚存的问题进行了较系统的实验研究,并建立了理论模型,进行了失效波传播的数值模拟。本文实验工作给出了K9玻璃中失效波速度和冲击载荷之间的定量关系和产生失效波的最小载荷阈值;通过:(1)玻璃样品和飞片表面状况对萌生失效波的载荷阈值的影响;(2)高速摄影观测冲击压缩下玻璃样品表面和内置界面处失效波的萌生和冲击波后压缩区内损伤演化情况;(3)回收样品的显微分析和X光衍射分析等实验,证实失效波的萌生基本与冲击相变无关,主要与玻璃样品表面状况有关,失效波的本质是玻璃样品表面固有微裂纹和冲击瞬间在此处萌生的微裂纹系统向玻璃样品中扩展的宏观统计表现。高速摄影观测到冲击波后有破碎界面在移动,其速度明显高于同等加载条件下VISAR测试的失效波速度,据此推测失效波是由大量裂纹扩展的宏观表现一破碎界面和其后方声阻抗明显降低的移动界面组成。实验同时研究了微晶玻璃、高纯度石英玻璃以及碱石灰玻璃在冲击压缩下的动力学响应特性。本文关于失效波方面的研究工作结果大部分未见相关文献报道。实验工作对于深入了解玻璃中失效波的萌生机制和失效波的力学性质等是非常重要的,并有助于建立与失效波萌生、传播有关的理论模型。改进有关实验技术,是完成本文实验研究的必要条件,也是本文工作的重要组成部分。本文设计了一种高接收效率、景深可调的新型VISAR探头,其技术指标接近国外同类产品,成本不到国外同类产品的二十分之一,且结构是国内外同类产品中最简单的。本文设计高速摄影的阴影和纹影光路,用于观察冲击压缩下玻璃样品中冲击损伤和失效波的演化及发展规律,其技术优于国外同类实验。本文设计了两种冲击压力低于玻璃样品HEL值的爆轰加载装置,用于配合高速摄影诊断实验。爆轰驱动厚飞片装置的设计,在飞片的炸药透镜之间增加了一个空腔,既降低了飞片的速度,又有效避免了以往同类装置驱动厚飞片时经常遇到的层裂问题,并且成功地进行了与爆轰驱动有关的数值模拟及设计工作。本文在理想微裂系统演化理论的基础上,建立了描述失效波的理论模型,分别讨论了表面损伤、微裂纹扩展和微裂纹形核、长大对失效波萌生、传播的影响,给出了描述失效波扩展的损伤演化方程,结合冲击压缩下材料的Resende压缩损伤本构方程,进行了各种加载条件下玻璃样品后自由表面速度和玻璃体内应力分存的数值模拟,计算结果与实验结果相符,表明本文建立的理论模型是可靠的,能够反映冲击压缩下失效波的传播特性的基本力学特性。用飞片碰玻璃样品时,实验测量的表面速度时程曲线出现“过冲现象”。本文通过高速摄影和VISAR等测试手段从实验上对其进行了较系统的研究,发现这种现象与玻璃样品后自由表面的破碎有关,并且其萌生所需的载荷阈值与萌生失效波的载荷阈值接近。本文建立了描述这一破坏现象的损伤演化方程,对其进行了数值模拟。计算结果和实验结果吻合,表明本文对这一现象的解释是合理的。
Resumo:
The catastrophic failure of heterogeneous brittle materials under impact loading is not fully understood. To describe the catastrophic failure behavior of heterogeneous brittle materials under impact loading, an elasto-statistical-brittle (ESB) model is proposed in this paper. The ESB model characterizes the disordered inhomogeneity of material at mesoscopic scale with the statistical description of the shear strength of mesoscopic units. If the applied shear stress reaches the strength, the mesoscopic unit fails, which causes degradation in the shear modulus of the material. With a simplified ESB model, the failure wave in brittle material under uni-axial compression is analyzed. It is shown that the failure wave is a wave of strain or particle velocity resulted from the catastrophic fracture in an elastically stressed brittle media when the impact velocity reaches a critical value. In addition, the failure wave causes an increase in the rear surface velocity, which agrees well with experimental observations. The critical condition to generate failure wave and the speed of failure wave are also obtained.
Resumo:
The process of damage evolution concerns various scales, from micro- to macroscopic. How to characterize the trans-scale nature of the process is on the challenging frontiers of solid mechanics. In this paper, a closed trans-scale formulation of damage evolution based on statistical microdamage mechanics is presented. As a case study, the damage evolution in spallation is analyzed with the formulation. Scaling of the formulation reveals that the following dimensionless numbers: reduced Mach number M, damage number S, stress wave Fourier number P, intrinsic Deborah number D*, and the imposed Deborah number De*, govern the whole process of deformation and damage evolution. The evaluation of P and the estimation of temperature increase show that the energy equation can be ignored as the first approximation in the case of spallation. Hence, apart from the two conventional macroscopic parameters: the reduced Mach number M and damage number S, the damage evolution in spallation is mainly governed by two microdamage-relevant parameters: the Deborah numbers D* and De*. Higher nucleation and growth rates of microdamage accelerate damage evolution, and result in higher damage in the target plate. In addition, the mere variation in nucleation rate does not change the spatial distribution of damage or form localized rupture, while the increase of microdamage growth rate localizes the damage distribution in the target plate, which can be characterized by the imposed Deborah number De*.
Resumo:
Polymer bonded explosives (PBXs) are highly particle filled composite materials comprised of explosive crystals and a polymeric binder (ca. 5-10% by weight). The microstructure and mechanical properties of two pressed PBXs with different binder systems were studied in this paper. The initial microstructure of the pressed PBXs and its evolution under different mechanical aggressions were studied, including quasi-static tension and compression, ultrasonic wave stressing and long-pulse low-velocity impact. Real-time microscopic observation of the PBXs under tension was conducted by using a scanning electron microscope equipped with a loading stage. The mechanical properties under tensile creep, quasi-static tension and compression were studied. The Brazilian test, or diametrical compression, was used to study the tensile properties. The influences of pressing pressures and temperatures, and strain rates on the mechanical properties of PBXs were analyzed. The mesoscale damage modes in initial pressed samples and the samples insulted by different mechanical aggressions, and the corresponding failure mechanisms of the PBXs under different loading conditions were analyzed.
Resumo:
The paper presents a reasonable analysis for dynamic response and failure process of a plane multi-layered media, which are subjected to a blast loading. This blast loading is induced by a cylindric explosive put on the center of top surface of the layered media. With the help of numerical simulation technique provided by LS-DYNA software, the whole process of explosion wave propagation and attenuation can be revealed. The feature of local failure around the blasting site is also discussed in some detail. Our focus will be on the explosion wave attenuation for the hard-soft-hard sandwich layers. As seen in the paper, the computational results are delivered in a feasible way by comparing with experimental data.
“Deborah Numbers”, Coupling Multiple Space and Time Scales and Governing Damage Evolution to Failure
Resumo:
Two different spatial levels are involved concerning damage accumulation to eventual failure. nucleation and growth rates of microdamage nN* and V*. It is found that the trans-scale length ratio c*/L does not directly affect the process. Instead, two independent dimensionless numbers: the trans-scale one * * ( V*)including the * **5 * N c V including mesoscopic parameters only, play the key role in the process of damage accumulation to failure. The above implies that there are three time scales involved in the process: the macroscopic imposed time scale tim = /a and two meso-scopic time scales, nucleation and growth of damage, (* *4) N N t =1 n c and tV=c*/V*. Clearly, the dimensionless number De*=tV/tim refers to the ratio of microdamage growth time scale over the macroscopically imposed time scale. So, analogous to the definition of Deborah number as the ratio of relaxation time over external one in rheology. Let De be the imposed Deborah number while De represents the competition and coupling between the microdamage growth and the macroscopically imposed wave loading. In stress-wave induced tensile failure (spallation) De* < 1, this means that microdamage has enough time to grow during the macroscopic wave loading. Thus, the microdamage growth appears to be the predominate mechanism governing the failure. Moreover, the dimensionless number D* = tV/tN characterizes the ratio of two intrinsic mesoscopic time scales: growth over nucleation. Similarly let D be the “intrinsic Deborah number”. Both time scales are relevant to intrinsic relaxation rather than imposed one. Furthermore, the intrinsic Deborah number D* implies a certain characteristic damage. In particular, it is derived that D* is a proper indicator of macroscopic critical damage to damage localization, like D* ∼ (10–3~10–2) in spallation. More importantly, we found that this small intrinsic Deborah number D* indicates the energy partition of microdamage dissipation over bulk plastic work. This explains why spallation can not be formulated by macroscopic energy criterion and must be treated by multi-scale analysis.
Resumo:
Submerged floating tunnel (SFT) is a popular concept of crossing waterways. The failure of the cable may occur due to vortex-induced-vibration (VIV), and the stability of the cable is crucial to the safety of the entire tunnel. Investigation results in recent years show that the vortex-induced vibration of the flexible cables with large aspect ratio reveals some new phenomena, for example, the vortex-induced wave, multi-mode competition, wide band random vibration, which have brought new challenges to the study of vortex-induced vibration of long flexible cables. In this paper, the dimensionless parameter controlling the wave types of dynamic response of slender cables undergoing vortex-induced vibration is investigated by means of dimensional analysis and finite element numerical simulations. Our results indicate that there are three types of response for a slender cable, i.e. standing wave vibration, traveling wave vibration and intermediate state. Based on dimensional analysis the controlling parameter is found to be related to the system damping including fluid damping and structural damping, order number of the locked-in modes and the aspect ratio of cable. Furthermore through numerical simulations and parameter regression, the expression and the critical value of controlling parameter is presented. At last the physical meaning of the parameter is analyzed and discussed.
Resumo:
Wave generation by the falling rock in the two-dimensional wave tank is experimentally and numerically studied, where the numerical model utilizes the boundary element method to solve the fully nonlinear potential flow theory. The wave profiles at different times are measured in the laboratory, which are also used to test the numerical model. Comparisons show that the experimental and numerical results are in good agreement, and the numerical model can be used to simulate the wave generation due to the submarine rock falling. Further numerical tests on the influences of the rock size, density, initial position and the falling angle on the wave elevation of the generated waves are performed, respectively. The results show that the size and density of the rock have strong effects on the maximum elevation of the generated wave, while the effects of the initial position and the falling angle of the rock are also significant. When the size or the density of the rock increases, the maximum elevation of the generated wave increases. The same effect on the generated wave would be produced if the initial position of the rock becomes closer to the surface, or the falling angle between the falling route and the vertical direction turns larger. In addition, the present numerical tests reveal that the submarine rock falling provides a new generation method for the breaking wave in the wave tank.
Resumo:
Dynamical behaviors and frequency characteristics of an active mode-locked laser with a quarter wave plate (QWP) are numerically studied by using a set pf vectorial laser equation. Like a polarization self-modulated laser, a frequency shift of half the cavity mode spacing exists between the eigen-modes in the two neutral axes of QWP. Within the active medium, the symmetric gain and cavity structure maintain the pulse's circular polarization with left-hand and right-hand in turn for each round trip. Once the left-hand or right-hand circularly polarized pulse passes through QWP, its polarization is linear and the polarized direction is in one of the directions of i45o with respect to the neutral axes of QWP. The output components in the directions of i45" from the mirror close to QWP are all linearly polarized with a period of twice the round-trip time.
Structural Failure Analysis and Numerical Simulation of Micro-Accelerometers under Impulsive Loading
Resumo:
Micromachined accelerometer is a kind of inertial MEMS devices, which usually operate under intensive impact loading. The reliability of micromachined accelerometers is one of the most important performance indices for their design, manufacture and commer
Resumo:
This report describes a new method for measuring the temperature of the gas behind the reflected shock wave in shock tube, corresponding to the reservoir temperature of a shock tunnel, based on the chemical reaction of small amount of CF4 premixed in the test gas. The final product C2F4 is used as the temperature indicator, which is sampled and detected by a gas chromatography in the experiment. The detected concentration of C2F4 is correlated to the temperature of the reflected shock wave with the initial pressure P-1 and test time tau as parameters in the temperature range 3 300 K < T < 5 600 K, pressure range 5 kPa < P1 <12 kPa and tau similar or equal to 0.4 ms.
Resumo:
Pressure wave refrigerators (PWR) refrigerate the gas through periodical expansion waves. Due to its simple structure and robustness, PWR may have many potential applications if the efficiency becomes competitive with existing alternative devices. In order to improve the efficiency, the characteristics of wave propagation in a PWR are studied by experiment, numerical simulation and theoretical analysis. Based on the experimental results and numerical simulation, a simplified model is suggested, which includes the assumptions of flux-equilibrium and conservation of the free energy. This allows the independent analysis of the operation parameters and design specifics. Furthermore, the optimum operation condition can be deduced. Some considerations to improve the PWR efficiency are also given.
Resumo:
The material response and failure mechanism of unidirectional metal matrix composite under impulsive shear loading are investigated in this paper. Both experimental and analytical studies were performed. The shear strength of unidirectional C-f/A356.0 composite and A356.0 aluminum alloy at high strain rate were measured with a modified split Hopkinson torsional bar technique. The results indicated that the carbon fibers did not improve the shear strength of aluminum matrix if the fiber orientation aligned with the shear loading axis. The microscopic inspection of the fractured surface showed a multi-scale zigzag feature which implied a complicated shear failure mechanism in the composite. In addition to testing, the micromechanical stress field in the composite was analyzed by the generalized Eshelby equivalent method (GEEM). The influence of cracking in matrix on the micromechanical stress field was investigated as well. The results showed that the stress distribution in the composite is quite nonhomogeneous and very high shear stress concentrations are found in some regions in the matrix. The high shear stress concentration in the matrix induces tensile cracking at 45 degrees to the shear direction. This in turn aggravates the stress concentration at the fiber/matrix interface and finally leads to a catastrophic failure in the composite. From the correlation between the analysis and experimental results, the shear failure mechanism of unidirectional C-f/A356.0 composite can be elucidated qualitatively.