77 resultados para equilibrium equation of number density
Resumo:
长期以来,材料的孔洞损伤一直是力学家和材料学家所关注的焦点之一,相应的研究方法很多,所得到的成果也很丰富。但是这些研究大部分是基于单个孔洞或有限个孔洞来考虑的,很少将大量的孔洞损伤作为整体来探讨。本文就是考虑到在韧性金属合金材料的破坏和失效过程中,往往是有大量的孔洞损伤参与其中的。我们试图将这些作为整体来考虑,并着重对初始裂纹钝化扩展过程的裂尖前沿来进行研究和讨论。本文从微孔洞数密度守恒方程出发,讨论了裂尖前沿孔洞损伤数密度群体化的方程以及它的解,探讨了损伤各阶矩的分布形式和演化规律。并且对一个系列低碳合金钢样品的I型初始裂纹的钝化扩展和断口孔洞的观察和统计的结果与计算模拟的结果进行了比较,得到了相同的趋势。计算模拟和试验的结果表明,在裂尖前沿孔洞损伤的群体演化过程中,损伤矩的分布是随着离开裂尖距离增加而减少的,并且这种分布随时间增加而且增加,并且趋于稳定分布。最后根据实验中反映出来的由于材料内部的不均匀等造成的孔洞损伤演化的不均匀性,引入随机涨落的概念导出局域孔洞数密度演化守恒方程来探讨这种不均匀性,通过模拟计算得到平均场理论和局域孔洞数密度守恒理论的差异,并由全场孔洞数密度演化守恒方程的分析来证实这个差异。
Resumo:
The evolution of dispersed short-fatigue-cracks is analysed based on the equilibrium of crack-number-density (CND). By separating the mean value and the stochastic fluctuation of local CND, the equilibrium equation of overall CND is derived. Comparing with the mean-field equilibrium equation, the equilibrium equation of overall CND has different forms in the expression of crack-nucleation-rate or crack-growth-rate. The simulation results are compared with experimental measurements showing the stochastic analyses provide consistent tendency with experiments. The discrepancy in simulation results between overall CND and mean-field CND is discussed.
Resumo:
The effects of stochastic extension on the statistical evolution of the ideal microcrack system are discussed. First, a general theoretical formulation and an expression for the transition probability of extension process are presented, then the features of evolution in stochastic model are demonstrated by several numerical results and compared with that in deterministic model.
Resumo:
This paper presents a general self-consistent theory of evolution and propagation of wavelets on the galactic disk. A simplified model for this theory, i. e. the thin transition-layer approximation is proposed.There are three types of solutions to the basic equation governing the evolution of wavelets on the disk: (ⅰ) normal propagating type; (ⅱ) swing type; (ⅲ) general evolving type. The results show that the first two types are applicable to a certain domain on the galactic disk and a certain region of the wave number of wavelets. The third is needed to join the other two types and to yield a coherent total picture of the wave motion. From the present theory, it can be seen that the well-known "swing theory" of the G-L sheet model holds only for a certain class of basic states of galaxies.
Resumo:
A new formulation derived from thermal characters of inclusions and host films for estimating laser induced damage threshold has been deduced. This formulation is applicable for dielectric films when they are irradiated by laser beam with pulse width longer than tens picoseconds. This formulation can interpret the relationship between pulse-width and damage threshold energy density of laser pulse obtained experimentally. Using this formulation, we can analyze which kind of inclusion is the most harmful inclusion. Combining it with fractal distribution of inclusions, we have obtained an equation which describes relationship between number density of inclusions and damage probability. Using this equation, according to damage probability and corresponding laser energy density, we can evaluate the number density and distribution in size dimension of the most harmful inclusions. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Molecular dynamics simulations are adopted to calculate the equation of state characteristic parameters P*, rho*, and T* of isotactic polypropylene (iPP) and poly(ethylene-co-octene) (PEOC), which can be further used in the Sanchez-Lacombe lattice fluid theory (SLLFT) to describe the respective physical properties. The calculated T* is a function of the temperature, which was also found in the literature. To solve this problem, we propose a Boltzmann fitting of the data and obtain T* at the high-temperature limit. With these characteristic parameters, the pressure-volume-temperature (PVT) data of iPP and PEOC are predicted by the SLLFT equation of state. To justify the correctness of our results, we also obtain the PVT data for iPP and PEOC by experiments. Good agreement is found between the two sets of data. By integrating the Euler-Lagrange equation and the Cahn-Hilliard relation, we predict the density profiles and the surface tensions for iPP and PEOC, respectively. Furthermore, a recursive method is proposed to obtain the characteristic interaction energy parameter between iPP and PEOC. This method, which does not require fitting to the experimental phase equilibrium data, suggests an alternative way to predict the phase diagrams that are not easily obtained in experiments.
Resumo:
Microcracks can have a strong influence on the elastic and fracture mechanical properties of rocks if they are numerous, or if they are orientated in unfavourable directions in anisotropic rocks in particular. This paper presents results from a great number of mechanical tests on Stripa granite containing various amounts of microcracks. Variations in the microcrack density were obtained by shock-heating the rock at different temperatures in the range 100–600°C for 3 h.
Resumo:
Specimens of the calanoid copepod, Leptodiaptomus minutus, collected in June 1994 in oligotrophic: north temperate Crystal Lake, were infested with the stalked ciliate Epistylis lacustris. E. lacustris was highly specific to L. minutus and no other coexisting zooplankters were infested. Excluding nauplii, nearly 70% of copepods carried 1-20 ciliates, although the maximum load was as high as 250 ciliates. A lower percentage of nauplii were infested by the ciliate; those that were infested had a lower ciliate load than other copepod stages. Infestation by ciliates had no significant influence on the average egg number of female copepods. In a field experiment, higher copepod densities in enclosures resulted in a significantly higher infestation rate, but the ciliate load per individual copepod did not differ significantly among treatments.
Resumo:
We perform a systematic calculation of the equation of state of asymmetric nuclear matter at finite temperature within the framework of the Brueckner-Hartree-Fock approach with a microscopic three-body force. When applying it to the study of hotka on condensed matter, we find that the thermal effect is more profound in comparison with normal matter, in particular around the threshold density. Also, the increase of temperature makes the equation of state slightly stiffer through suppression of kaon condensation.
Resumo:
The cooling storage ring, to be built at Lanzhou, will be able to deliver heavy ion beams up to uranium up to 0.52 GeV/u. It is expected to make considerable contribution to nuclear EOS study in the high net baryon-density region. With a relativistic transport model, we performed simulations for U+U collisions with different orientations. It is shown that by combining the forward neutron multiplicity and an event-wise elliptic flow selection, it is possible to identify the tip - tip and body - body head-on collisions. The effective identification of these two extreme configurations will allow us to study the EOS at the highest baryon density in the U+U collisions.
Resumo:
Assuming Theta(+) interacts with nucleon or Theta(+) by exchanging isoscalar mesons sigma and omega, the equation of state of {p, n, Theta(+)} and possible metastable state are studied in the framwork of the density dependent relativistic hadron field theory(DDRH). The ratio of the proton isospin to the neutron isospin with different baryon densities and the effect of the Theta(+) component on the binding energy per baryon of the system are also discussed. It is shown that when the binding energy per baryon of the system takes the maximal value, Theta(+) might be bound in the nuclear matter.
Resumo:
We study the relation between the thermodynamics and field equations of generalized gravity theories on the dynamical trapping horizon with sphere symmetry. We assume the entropy of a dynamical horizon as the Noether charge associated with the Kodama vector and point out that it satisfies the second law when a Gibbs equation holds. We generalize two kinds of Gibbs equations to Gauss-Bonnet gravity on any trapping horizon. Based on the quasilocal gravitational energy found recently for f(R) gravity and scalar-tensor gravity in some special cases, we also build up the Gibbs equations, where the nonequilibrium entropy production, which is usually invoked to balance the energy conservation, is just absorbed into the modified Wald entropy in the Friedmann-Robertson-Walker spacetime with slowly varying horizon. Moreover, the equilibrium thermodynamic identity remains valid for f(R) gravity in a static spacetime. Our work provides an alternative treatment to reinterpret the nonequilibrium correction and supports the idea that the horizon thermodynamics is universal for generalized gravity theories.
Resumo:
On the basis of the thermodynamics of Gibbs, the spinodal for the quasibinary system was derived in the framework of the Sanchez-Lacombe lattice fluid theory. All of the spinodals were calculated based on a model polydisperse polymer mixture, where each polymer contains three different molecular weight subcomponents. According to our calculations, the spinodal depends on both weight-average ((M) over bar (w)) and number-average ((M) over bar (n)) molecular weights, whereas that of the z-average molecular weight is invisible. Moreover, the extreme of the spinodal decreases when the polydispersity index (eta = (M) over bar (w)/(M) over bar (n)) of the polymer increases. The effect of polydispersity on the spinodal decreases when the molecular weight gets larger and can be negligible at a certain large molecular weight. It is well-known that the influence of polydispersity on the phase equilibrium (coexisting curve, cloud point curves) is much more pronounced than on the spinodal. The effect of M, on the spinodal is discussed as it results from the infuluence of composition temperatures, molecular weight, and the latter's distribution on free volume. An approximate expression, which is in the assumptions of v* v(1)* = v(2)* and 1/r --> 0 for both of the polymers, was also derived for simplification. It can be used in high molecular weight, although it failed to make visible the effect of number-average molecular weight on the spinodal.