120 resultados para electrostatic surface potential


Relevância:

100.00% 100.00%

Publicador:

Resumo:

By calculating the energy distribution of electrons reaching the photocathode surface and solving the Schrodinger equation that describes the behavior of an electron tunneling through the surface potential barrier,we obtain an equation to calculate the emitted electron energy distribution of transmission-mode NEA GaAs photocathodes. Accord- ing to the equation,we study the effect of cathode surface potential barrier on the electron energy distribution and find a significant effect of the barrier-Ⅰ thickness or end height,especially the thickness,on the quantum efficiency of the cath- ode. Barrier Ⅱ has an effect on the electron energy spread, and an increase in the vacuum level will lead to a narrower electron energy spread while sacrificing a certain amount of cathode quantum efficiency. The equation is also used to fit the measured electron energy distribution curve of the transmission-mode cathode and the parameters of the surface barri- er are obtained from the fitting. The theoretical curve is in good agreement with the experimental curve.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

P-type copper phthalocyanine (CuPc) and n-type hexadecafluorophthalocyanina-tocopper (F16CuPc) polycrystalline films were investigated by Kelvin probe force microscopy (KPFM). Topographic and corresponding surface potential images are obtained simultaneously. Surface potential images are related with the local work function of crystalline facets and potential barriers at the grain boundaries (GBs) in organic semiconductors. Based on the spatial distribution of surface potential at GBs, donor- and acceptor-like trapping states in the grain boundaries (GBs) of p-CuPc and n-F16CuPc films are confirmed respectively.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We present a novel contactless and nondestructive method called the surface electron beam induced voltage (SEBIV) method for characterizing semiconductor materials and devices. The SEBIV method is based on the detection of the surface potential induced by electron beams of scanning electron microscopy (SEM). The core part of the SEBIV detection set-up is a circular metal detector placed above the sample surface. The capacitance between the circular detector and whole surface of the sample is estimated to be about 0.64 pf It is large enough for the detection of the induced surface potential. The irradiation mode of electron beam (e-beam) influences the signal generation. When the e-beam irradiates on the surface of semiconductors continuously, a differential signal is obtained. The real distribution of surface potentials can be obtained when a pulsed e-beam with a fixed frequency is used for irradiation and a lock-in amplifier is employed for detection. The polarity of induced potential depends on the structure of potential barriers and surface states of samples. The contrast of SEBIV images in SEM changes with irradiation time and e-beam intensity.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The photocurrent curves of reflection-mode GaAs photocathodes as a function of time, when were illuminated by white light with an intensity of 0, 33 and 100 Ix, respectively, were measured using a multi-information measurement system. The calculated lifetimes of cathodes are 320, 160 and 75 min, respectively, showing that the stability of cathodes degraded with the increase of light intensity. The lifetime of cathode, illuminated by white light with an intensity of 100 Ix, while no photocurrent was being drawn during the illumination, was 100 min. Through comparison, we found that the influence of illumination on cathodes stability is greater than that of photocurrent. The quantum-yield curves of cathodes as a functions of time, when illuminated by white light with an intensity of 33 Ix, were measured also. The measured results show that the shape of the yield curves changes with increasing illumination time due to the faster quantum-yield degradation rate of low energy photons. Based on the revised quantum-efficiency equations for the reflection-mode cathodes, the variation of yield curves are analyzed to be due to the intervalley diffusion of photoelectrons and the evolution of the surface potential barrier profile of the photocathodes during degradation process.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The results of a reflectance-difference spectroscopy study of GaAs grown on (100) GaAs substrates by low-temperature molecular-beam epitaxy (LT-GaAs) are presented. In-plane optical anisotropy resonances which come from the linear electro-optic effect produced by the surface electric field are observed. The RDS line shape of the resonances clearly shows that the depletion region of LT-GaAs is indeed extremely narrow (much less than 200 Angstrom). The surface potential is obtained from the RDS resonance amplitude without the knowledge of space-charge density. The change of the surface potential with post-growth annealing temperatures reflects a complicated movement of the Fermi level in LT-GaAs. The Fermi level still moves for samples annealed at above 600 degrees C, instead of being pinned to the As precipitates. This behavior can be explained by the dynamic properties of defects in the annealing process.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Dextran sulfate (DS)/poly-L-lysine (PLL) microcapsules are fabricated by an in situ coacervation method using DS-doped CaCO3 microparticles as templates. Twinned superstructures or spherical CaCO3 microparticles are produced depending on DS concentration in the starting Solution. DS/PLL microcapsules with ellipsoidal or spherical outline are obtained after removal of templates in disodium ethylene diamine tetraacetate dehydrate (EDTA) without PLL. Their shell thickness and negative surface charges increase with the DS weight percentage in the templates. The surface potential of DS/PLL microcapsules.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Spark discharge was the representative phenomenon of Micro-arc oxidation (MAO) method distinguished from other electrochemical oxidation methods. Under the spark discharge treatment, characteristics of the anodic layer were significantly changed. To investigate the influences of the spark discharge, a piece of magnesium alloy AZ91D specimen was partly treated by MAO method in alkaline silicate solution. And the microstructure, element distributions as well as the surface potential distributions of the specimen were studied by scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and scanning Kelvin probe (SKP) technique. As a result of intensive spark discharge treatment, porous external layer with dense internal layer were formed on Mg alloy surface. At the same time, the depositions of OH- and SiO32- ions were accelerated, which resulted in the enrichment of element oxygen and silicon at the spark discharge region. Moreover, due to the compact internal layer, the intensive spark discharge region exhibited more positive potentials with respect to other regions, which meant this region could restrain the ejection of electron and provide effective protection to the substrate. In addition, it was found that oxygen played a vital role in determining the intensity and size of sparks, and abundant oxygen resulted in intensive and larger sparks. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Hydrogen permeation of 16Mn steel under a cyclic wet-dry condition was investigated by Devanathan-Stachurski's electrolytic cell with a membrane covered on the exit side by a nickel layer and the weight loss was measured for each wet-dry cycle. The results show that hydrogen permeation current change with different atmospheric environment: distilled water, seawater, and seawater containing 100 ppm H2S. The results show that seawater can induce an increase in the hydrogen permeation current due to the hydrolyzation reaction. And after the increase, equilibrium is reached due to the equilibrium of hydrolyzation reaction effect and the block of the rust layer. On the other hand, H2S contamination also can induce an increase in the maximum hydrogen permeation current due to the hydrolyzation reaction. And H2S contamination delays the time that hydrogen permeation is detected because of the formation of the FeS(1-x) film. The FeS(1-x) film can block the absorption of hydrogen onto the specimen surface. The surface potential change and the pH change of the metal surface control the hydrogen permeation current. And a clear linear correlation exists between the quantities of hydrogen permeated through the 16Mn steel and the weight loss. Based on the linear correlation, we monitored the corrosion rate by monitoring the hydrogen permeation current by a sensor outside. Good coherences were shown between results in laboratory and outside.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Imaging ellipsometry was combined with electrochemical methods for studying electrostatic interactions of protein and solid surfaces. The potential of zero charge for gold-coated silicon wafer/solution interfaces wad determined by AC impedance method. The potential of the gold-coated silicon wafer was controlled at the potential of zero charge, and the adsorption of fibrinogen on the potential-controlled and non-controlled surfaces was measured in real time at the same time by imaging ellipsometry The effect of electrostatic interaction was studied by comparing the difference between the potential of controlled adsorption and the Potential of noncontrolled adsorption. It was shown that the rate of fibrinogen adsorption on the potentiostatic surface was faster than that on the nonpotentiostatic surface. The electrostatic influence on fibrinogen adsorption on the gold-coated silicon wafer was weak, so the hydrophobic interaction should be the major affinity.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We study electron tunneling through a planar magnetic and electric barrier on the surface of a three-dimensional topological insulator. For the double barrier structures, we find (i) a directional-dependent tunneling which is sensitive to the magnetic field configuration and the electric gate voltage, (ii) a spin rotation controlled by the magnetic field and the gate voltage, (iii) many Fabry-Perot resonances in the transmission determined by the distance between the two barriers, and (iv) the electrostatic potential can enhance the difference in the transmission between the two magnetization configurations, and consequently lead to a giant magnetoresistance. Points (i), (iii), and (iv) are alike with that in graphene stemming from the same linear-dispersion relations.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The Al atomic characteristic spectral lines were induced by the impact of Ar-40(q+) ions (8 <= q <= 16; kinetic energy 150 keV) on Al surface. The result shows that by Penning impinging and resonant capture, the ion energy is deposited on the Al surface to excite the target atom, which is different from light excitation. Not only are the transitions betweem electronic configurations of the atomic complex excited, but the enhancing tendency of the characteristic spectral line intensity is consistent with the enhancing tendency of the coulomb potential energy of the incident ions with increasing charged states.