44 resultados para due credibility
Resumo:
The transient thermal stress problem of an inner-surface-coated hollow cylinder with multiple pre-existing surface cracks contained in the coating is considered. The transient temperature, induced thermal stress, and the crack tip stress intensity factor (SIF) are calculated for the cylinder via finite element method (FEM), which is exposed to convective cooling from the inner surface. As an example, the material pair of a chromium coating and an underlying steel substrate 30CrNi2MoVA is particularly evaluated. Numerical results are obtained for the stress intensity factors as a function of normalized quantities such as time, crack length, convection severity, material constants and crack spacing. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
Slip-weakening is one of the characteristics of geological materials under certain loadings. Non-uniform rock structure may exist in the vicinity of the slip surface for a rock slope. Some portion of the slip surface may be penetrated but the other not. For the latter case, the crack or the fault surface will undergo shear deformation before it becomes a successive surface under a certain loading. As the slipped portion advances,slip-weakening occurs over a distance behind the crack tip. In the weakening zone, the shear strength will decrease from its peak value to residual friction level. The stress will redistribute along the surface of crack and in the weakening zone. Thus the changed local stress concentration leads the crack to extend and the ratio of penetration of the slip surface to increase. From the view of large-scale for the whole slip surface, the shear strength will decrease due to the damage of interior rock structure, and the faulted rock behaves as a softening material. Such a kind of mechanism performs in a large number of practical landslides in the zones experienced strong earthquakes. It should be noted that the mechanism mentioned above is different from that of the breakage of structural clay,in which the geological material is regarded as a medium containing structural lumps and structural bands. In this paper, the softening behavior of a faulted rock should be regarded as a comprehensive result of the whole complicated process including slip-weakening, redistribution of stress, extension of crack tip, and the penetration of the slip surface. This process is accompanied by progressive failure and abrupt structural damage. The size of slip-weakening zone is related to the undergoing strain. Once the relative slide is initiated (local or integrated), the effect of slip-weakening will behave in a certain length behind the crack tip until the formation of the whole slip surface.
Resumo:
By sample specificity it is meant that specimens with the same nominal material parameters and tested under the same environmental conditions may exhibit different behavior with diversified strength. Such an effect has been widely observed in the testing of material failure and is usually attributed to the heterogeneity of material at the mesoscopic level. The degree with which mesoscopic heterogeneity affects macroscopic failure is still not clear. Recently, the problem has been examined by making use of statistical ensemble evolution of dynamical system and the mesoscopic stress re-distribution model (SRD). Sample specificity was observed for non-global mean stress field models, such as the duster mean field model, stress concentration at tip of microdamage, etc. Certain heterogeneity of microdamage could be sensitive to particular SRD leading to domino type of coalescence. Such an effect could start from the microdamage heterogeneity and then be magnified to other scale levels. This trans-scale sensitivity is the origin of sample specificity. The sample specificity leads to a failure probability Phi (N) with a transitional region 0 <
Resumo:
利用热弹性理论分析了在光学材料中由于缺陷吸收激光能量引起的温度和热应力分布,并且针对一个简单的裂纹模型分析了热应力产生的应力强度因子,给出了一些主要参数对于应力强度因子的影响的规律。
Resumo:
发展了一种新的分析涂层结构(平板、梁)热残余应力的模型,可以研究骤冷过程(Quenching)和冷却过程(Cooling)在涂层结构内引发的残余应力分布。与以往模型相比,其优势在于:它可以考虑源于喷涂过程的涂层孔隙率、温度梯度等因素对于涂层和基底内残余应力的影响。其中孔隙率和温度分布由计算机模拟涂层沉积过程得到。另外,当基底的材料和几何参数被固定时,我们分析了诸如涂层的理想模量、厚度、热膨胀系数等参数,对于涂层结构中最终残余应力分布的改变机理。
Resumo:
This paper performed a numerical simulation on temperature field evolution for the surface layer of a metallic alloy subjected to pulsed Nd:YAG laser treatment. The enthalpy method was adopted to solve the moving boundary problem, I.e. Stefan problem. Computational results were obtained to show the temperature field evolution. Effects of latent heat and mushy zone width on the temperature field were investigated. The results also show very high values of temperature gradient and cooling rate, which are typical characteristics during the solidification process.
Resumo:
Ultrasonic technique is used to detect the velocity change of stress wave propagated in the cement mortar immersed in the solution of sodium sulfate for 425 days. Also the density change of specimens at different erosion time is measured. By curve fitting, the effect of solutions' concentration and water/cement ratio on the damage evolution is analyzed. The SEM observation on the growth of delayed ettringite is also performed. It shows that the damage evolution of specimens attacked by sulphate solution is dominantly induced by the nucleation and growth of delayed ettringite, and the average size of microvoids in cement mortar affects the damage evolution significantly. (c) 2008 Elsevier Ltd. All rights reserved.
Resumo:
This paper reports a comparative study of shear banding in BMGs resulting from thermal softening and free volume creation. Firstly, the effects of thermal softening and free volume creation on shear instability are discussed. It is known that thermal softening governs thermal shear banding, hence it is essentially energy related. However, compound free volume creation is the key factor to the other instability, though void-induced softening seems to be the counterpart of thermal softening. So, the driving force for shear instability owing to free volume creation is very different from the thermally assisted one. In particular, long wave perturbations are always unstable owing to compound free volume creation. Therefore, the shear instability resulting from coupled compound free volume creation and thermal softening may start more like that due to free volume creation. Also, the compound free volume creation implies a specific and intrinsic characteristic growth time of shear instability. Finally, the mature shear band width is governed by the corresponding diffusions (thermal or void diffusion) within the band. As a rough guide, the dimensionless numbers: Thermal softening related number B, Deborah number (denoting the relation of instability growth rate owing to compound free volume and loading time) and Lewis number (denoting the competition of different diffusions) show us their relative importance of thermal softening and free volume creation in shear banding. All these results are of particular significance in understanding the mechanism of shear banding in bulk metallic glasses (BMGs).
Resumo:
The ablation rate of a hydrogen isotopic spherical pellet G(is) due to the impact of energetic ions of the respective isotopes and its scaling law are obtained using the transsonic neutral-shielding model, where subscript s might refer to either hydrogen or deuterium. Numerical results show that if E0s/E0e2 greater-than-or-equal-to 1.5, G(is)/G(es) greater-than-or-equal-to 20%, where E0s and E0e are the energy of undisturbed ion and electron, respectively, and G(es) is the ablation rate of a pellet due to the impact of electrons. Hence, under the NBI heating, the effect of the impact of energetic ions on the pellet ablation should be taken into consideration. This result also gives an explanation of the observed enhancement of pellet ablation during NBIH.
Resumo:
We report an intriguing observation that the interaction of brittle nanoscale periodic corrugations (NPCs) can lead to the formation of ductile dimples on the dynamic fracture surface of a tough Vit 1 bulk metallic glass (BMG) under high-velocity plate impact. A “beat” phenomenon due to superposition of simple harmonic vibrations, approximately characterizing NPCs, is proposed to explain this unusual brittle-to-ductile transition. The present results agree well with our previously revealed energy dissipation mechanism in the fracture of BMGs.
Resumo:
The dynamics and harmonics emission spectra due to electron oscillation driven by intense laser pulses have been investigated considering a single electron model. The spectral and angular distributions of the harmonics radiation are numerically analyzed and demonstrate significantly different characteristics from those of the low-intensity field case. Higher-order harmonic radiation is possible for a sufficiently intense driving laser pulse. A complex shifting and broadening structure of the spectrum is observed and analyzed for different polarization. For a realistic pulsed photon beam, the spectrum of the radiation is redshifted for backward radiation and blueshifted for forward radiation, and spectral broadening is noticed. This is due to the changes in the longitudinal velocity of the electron during the laser pulse. These effects are much more pronounced at higher laser intensities giving rise to even higher-order harmonics that eventually leads to a continuous spectrum. Numerical simulations have further shown that broadening of the high harmonic radiation can be limited by increasing the laser pulse width. The complex shifting and broadening of the spectra can be employed to characterize the ultrashort and ultraintense laser pulses and to study the ultrafast dynamics of the electrons. (c) 2006 American Institute of Physics.
Resumo:
We investigate the emission spectra of the semiconductor quantum well for few-cycle and sub-cycle pulse exciting. We find that Fano interference may induce third harmonic enhancement. Third harmonic enhancement varies with the magnitude and duration of the incident pulse, and may be enhanced by approximately one order of magnitude for the low intensity region of the sub-cycle incident pulse exciting.