41 resultados para disappearance
FLUCTUATION OF SIZE-FRACTIONATED ALKALINE PHOSPHATASE AFTER BLOOM DISAPPEARANCE IN TWO SHALLOW PONDS
Resumo:
The temporal and vertical fluctuations of size fractionated alkaline phosphatase activity (APA) and kinetics parameters as well as orthophosphate (o-P) and chlorophyll concentrations were investigated after bloom disappearance in two shallow ponds A and B from 27 October 2001 to 15 April 2002. Pond A (Microcystis) bloomed seriously but pond B did not. The data of o-P and chlorophyll suggested that phosphorus was the principal limiting nutrimental element and its vertical flux should be regarded as an important driving factor for algal growth. In pond A, the accumulation of algae-derived detritus after bloom disappearance in overlying water stimulated excretion of algal fraction APA, mainly produced by attached bacteria responsible for detritus decomposition, whereas bacterial fraction APA preferred to function in surface water. Interestingly, completely contrary phenomena were observed in pond B. In season, even though no obvious difference for size-fractionated APA in both ponds, the total APA in pond A peaked earlier showing higher activity and efficiency (low K-m and high V-max values) as a result of algal-derived detritus input. In summary, it is suggested that the excretion of alkaline phosphatase with strongly catalyzing efficiency and high activity should be taken as important contributor to algal-derived detritus decomposition, further fueling nutrient recycle and accelerating algal development next year. Furthermore, some inhibitors and surfactants were testified to be good tools to identify the origin of dissolved alkaline phosphatase.
Resumo:
Plastic deformation behaviors of Zr65Al10Ni10CU15 and Zr52.5Al10Ni10Cu15Be12.5 bulk metallic glasses (BMGs) are studied by using the depth-sensing nanoindentation, microindentation and uniaxial compression. The Be-containing BMG exhibits a significantly improved overall plastic strain compared with the Be-free alloy during compressive tests. Both BMGs show a loading-rate-dependent serrated flow during nanoindentation measurements, but the Be-containing alloy exhibits a much lower critical loading rate for the disappearance of the serration than the Be-free BMG. The shear band patterns developed during plastic deformation are investigated by microindentation technique, wherein much higher shear band density is found in the Be-containing alloy than in the Be-free alloy, indicating an easier nucleation of shear bands in the former BMG. The difference in the plastic deformation behavior of the two BMGs can be explained by a free volume model.
Resumo:
Plastic deformation behaviour of Zr52.5Al10Ni10Cu15Be12.5 and Mg65Cu25Gd10 bulk metallic glasses (BMGs) is studied by using the depth-sensing nanoindentation and microindentation. The subsurface plastic deformation zone of the BMGs is investigated using the bonded interface technique. Both the BMGs exhibit the serrated flow depending on the loading rate in the loading process of indentation. Slow indentation rates promote more conspicuous serrations, and rapid indentations suppress the serrated flow. Mg-based BMG shows a much higher critical loading rate for the disappearance of the serration than that in Zr-based BMG. The significant difference in the shear band pattern in the subsurface plastic deformation zone is responsible for the different deformation behaviour between the two BMGs. Increase of the loading rate can lead to the increase of the density of shear bands. However, there is no distinct change in the character of shear bands at the loading rate of as high as 1000 nm/s.
Resumo:
Internal friction of nanocrystalline nickel is investigated by mechanical spectroscopy from 360 K to 120 K. Two relaxation peaks are found when nanocrystalline nickel is bent up to 10% strain at room temperature and fast cooling. However, these two peaks disappear when the sample is annealed at room temperature in vacuum for ten days. The occurrence and disappearance of the two relaxation peaks can be explained by the interactions of partial dislocations and point defects in nanocrystalline materials.
Resumo:
Quasicrystalline phase with different volume fraction were formed by isothermally annealing the as-castZr(62)Al(9.5)Ni(9.5)Cu(14)Nb(5) bulk metallic glass at 723 K for different times. The effects of quasicrystals on the deformation behavior of the materials were studied by nanoindentation and compression test. It revealed that the alloys with homogeneous amorphous structure exhibit pronounced flow serrations during the nanoindentation loading, while no obvious flow serration is observed for the sample with quasicrystals more than 10 vol.%. However, further compression tests confirm that the no-serrated flows are formed due to different reasons. For annealed samples containing quasicrystals less than 35 vol.%, continuous plastic deformation occurs due to propagation of multiple shear bands. While the disappearance of serrated flow cannot be explained by the generation of multiple shear bands for samples containing quasicrystals more than 35 vol.%, which will fracture with a totally different fracture mode, namely, dimple fracture mode under loading instead of shear fracture mode. (c) 2005 Published by Elsevier B.V.
Resumo:
Molecular dynamics (MD) simulations are carried out to analyze the diffusion bonding at Cu/Al interfaces. The results indicate that the thickness of the interfacial layer is temperature-dependent, with higher temperatures yielding larger thicknesses. At temperatures below 750 K, the interface thickness is found to increase in a stepwise manner as a function of time. At temperatures above 750 K, the thickness increases rapidly and smoothly. When surface roughness is present, the bonding process consists of three stages. In the first stage, surfaces deform under stress, resulting in increased contact areas. The second stage involves significant plastic deformation at the interface as temperature increases, resulting in the disappearance of interstices and full contact of the surface pair. The last stage entails the diffusion of atoms under constant temperature. The bonded specimens show tensile strengths reaching 88% of the ideal Cu/Al contact strength. (c) 2007 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Resumo:
Strong laser-field-induced autoionisation in the presence of both photoionising and radiative decay of the autoionising state (AS) is investigated, focusing on the laser intensity dependence of the photoemission and photoelectron spectra. In contrast to previous predictions, power broadening and increasing reduction of the doublet peak heights with field strength are found in the photoemission spectrum. Similar effects leading to considerable suppression and even complete disappearance of the lowest-order peaks in the photoelectron spectrum, together with peak switching, are also demonstrated, which are closely related to above-threshold ionisation. In addition, it is suggested that the total number of energetic photoelectrons may serve as an alternative to measuring the atomic parameters of the AS. All these effects are attributed to the presence of the strong `probe': laser-induced decay of the AS.
Resumo:
The recently observed anomaly in photoelectron angular distributions (PADs), the disappearance of the main lobes of PADs which should be usually in the direction of laser polarization, is reinterpreted as a minimum of generalized Bessel functions in the laser-polarization direction with the theory of nonperturbative quantum electrodynamics. The reinterpretation has no artificial fitting parameters and explains more features of the experimentally observed PADs, in contrast to the existing interpretation in which the anomaly is interpreted as a quantum interference of angular momentum partial waves. Some hierarchy anomalies are predicted for further experimental observations.
Resumo:
We systematically investigate the square-lattice dielectric photonic crystals that have been used to demonstrate flat slab imaging experimentally. A right-handed Bloch mode is found in the left-handed frequency region by using the plane wave expansion method to analyze the photonic band structure and equifrequency contours. Using the multiple scattering theory, numerical simulations demonstrate that the left-handed mode and the right-handed mode are excited simultaneously by a point source and result in two kinds of transmitted waves. Impacted by the evanescent waves, superposition of these transmitted waves brings on complicated near field distributions such as the so-called imaging and its disappearance.
Resumo:
Photoluminescence spectrum of Ce:YAG single crystal was studied employing vacuum ultraviolet (VUV) synchrotron radiation. Intrinsic absorption edge at about 52,000 cm(-1) was observed in the absorption spectrum. From the VUV excitation spectrum, the energy of the highest d-component of 53,191 cm(-1) (188 nm) for the Ce3+ ions in YAG was obtained at 300 K. The disappearance of the third 5d level at 37,735 cm(-1) (265 nm) in absorption and excitation spectra in our samples may be due to the impurity Fe3+ ions absorption. (C) 2006 Elsevier Ltd. All rights reserved.
Resumo:
In this paper, we present the results of purification and characterization of an arginine/lysine amidase from the venom of Ophiophagus hannah (OhS1). It was purified by Sephadex G-75 gel filtration and ion-exchange chromatography on DEAE-Sepharose CL-6B. It is a protein of about 43,000, consisting of a single polypeptide chain. It is a minor component in the venom. The purified enzyme was capable of hydrolysing several tripeptidyl-p-nitroanilide substrates having either arginine or lysine as the C-terminal residue. We studied the kinetic parameters of OhS1 on six these chromogenic substrates. OhS1 did not clot fibrinogen. Electrophoresis of fibrinogen degraded with OhS1 revealed the disappearance of the alpha- and beta-chains and the appearance of lower mel. wt fragments. OhS1 had no hemorrhagic activity. It did not hydrolyse casein, nor did it act on blood coagulation factor X, prothrombin and plasminogen. The activity of OhS1 was completely inhibited by NPGB, PMSF, DFP, benzamidine and soybean trypsin inhibitor, suggesting it is a serine protease. Metal chelator (EDTA) had no effect on it.
Resumo:
Fish introduction, eutrophication and disappearance of aquatic vegetation are important disturbances of aquatic ecosystems, especially in plateau lakes, which are generally considered to be very vulnerable. Fish were introduced to Lake Dianchi, a eutrophic plateau lake in southwest China, in the late 1950s and 1970s. After the introduction, invasive fish became the dominant species, and the total fish yield increased. Meanwhile, the trophic level of Lake Dianchi had a tendency to increase in the past decades because of the increases in human activities in the watershed area. In addition, the area of aquatic vegetation decreased from more than 90 to 1.8% of the lake area from the 1950s to 2000. This study investigated the effects of fish introduction, eutrophication and aquatic vegetation on the diatom community of Lake Dianchi by examining the changes of microfossil diatom assemblage and abundance. Results showed that the absolute abundance and diatom assemblages changed after fish were introduced. The endemic species, Cyclotella rohomboideo-elliptica, disappeared with the introduction of fish and increasing trophic levels after 1958. Fragilaria crotonensis entered into the lake with the introduction of fish and gradually thrived in the lake after 1958. Diatom species numbers also decreased gradually from 21 to 9 from the past to present. Epiphytic diatoms disappeared with the decrease of aquatic vegetation after 1985. Our study indicated that eutrophication was the most important process determining diatom abundance, and fish introduction was a secondary process determining diatom abundance, while aquatic vegetation had a more important role in structuring the diatom community in this eutrophic plateau lake.
Resumo:
In China, especially in Three-Gorges Reservoir, our knowledge of the algal growth potential and nutrient limitation was still limited. In the spring of 2006, the water column ratios of total nitrogen/total phosphorus were investigated and algal bioassays performed to determine algal growth potential of waters and nutrient limitation of mainstream and Xiangxi Bay of Three-Gorges Reservoir. The results showed sampling sites in mainstream were co-limited by N and P or P-limited alone, and sites in Xiangxi Bay were N-limited alone. Fe likely played an important role in determining the appearance and disappearance of algal blooms of Three-Gorges Reservoir. Native algae, Pseudokirchneriella subcapitata and Cyclotella meneghiniana, had high growth potential in Three-Gorges Reservoir.
Resumo:
The phytoplankton community in Lake Dianchi (Yunnan Province, Southwestern China) is dominated in April by a bloom of Aphanizomenon, that disappears Suddenly and is displaced by a Microcystis bloom in May. The reasons for the rapid bloom disappearance phenomenon and the temporal variability in the composition of phytoplankton assemblages are poorly understood. Cell growth, ultrastructure and physiological changes were examined in cultures of Aphanizomenon sp. DC01 isolated from Lake Dianchi exposed to different closes of rnicrocystin-RR (MC-RR) produced by the Microcystis bloom. MC-RR concentrations above 100 mu g L-1 markedly inhibited the pigment (chlorophyll-a, phycocyanin) synthesis and caused an increase of soluble carbohydrate and protein contents and nitrate reductase activity of toxin-treated blue-green algae. A drastic. reduction in photochemical efficiency of PSII (Fv/Fm) was also found. Morphological examinationn showed that the Aphanizomenon filaments disintegrated and file cells lysed gradually after 48 h Of toxin exposure. Transmission electron microscopy revealed that cellular inclusions of stressed cells almost leaked out completely and the cell membranes were grossly damaged. These findings demonstrate the allelopathic activity of Microcystis aeruginosa inducing physiological stress and cell death of Aphanizomenon sp. DC01 Although the active concentrations of microcystin were rather high, we propose that microcystin may function as allelopathic Substance due to inhomogeneous toxin concentrations close to Microcystis cells. Hence, it may play a role in species Succession of Aphanizomenon and Microcystis in Lake Dianchi.
Resumo:
The Yangtze River dolphin or baiji ( Lipotes vexillifer), an obligate freshwater odontocete known only from the middle-lower Yangtze River system and neighbouring Qiantang River in eastern China, has long been recognized as one of the world's rarest and most threatened mammal species. The status of the baiji has not been investigated since the late 1990s, when the surviving population was estimated to be as low as 13 individuals. An intensive six-week multivessel visual and acoustic survey carried out in November-December 2006, covering the entire historical range of the baiji in the main Yangtze channel, failed to find any evidence that the species survives. We are forced to conclude that the baiji is now likely to be extinct, probably due to unsustainable by-catch in local fisheries. This represents the first global extinction of a large vertebrate for over 50 years, only the fourth disappearance of an entire mammal family since AD 1500, and the first cetacean species to be driven to extinction by human activity. Immediate and extreme measures may be necessary to prevent the extinction of other endangered cetaceans, including the sympatric Yangtze finless porpoise ( Neophocaena phocaenoides asiaeorientalis).