54 resultados para coupled nonlinear Schrodinger equations
Resumo:
The dynamics of long slender cylinders undergoing vortex-induced vibrations (VIV) is studied in this work. Long slender cylinders such as risers or tension legs are widely used in the field of ocean engineering. When the sea current flows past a cylinder, it will be excited due to vortex shedding. A three-dimensional time domain model is formulated to describe the response of the cylinder, in which the in-line (IL) and cross-flow (CF) deflections are coupled. The wake dynamics, including in-line and cross-flow vibrations, is represented using a pair of non-linear oscillators distributed along the cylinder. The wake oscillators are coupled to the dynamics of the long cylinder with the acceleration coupling term. A non-linear fluid force model is accounted for to reflect the relative motion of cylinder to current. The model is validated against the published data from a tank experiment with the free span riser. The comparisons show that some aspects due to VIV of long flexible cylinders can be reproduced by the proposed model, such as vibrating frequency, dominant mode number, occurrence and transition of the standing or traveling waves. In the case study, the simulations show that the IL curvature is not smaller than CF curvature, which indicates that both IL and CF vibrations are important for the structural fatigue damage.
Resumo:
It is demonstrated that when tension leg platform (TLP) moves with finite amplitude in waves, the inertia force, the drag force and the buoyancy acting on the platform are nonlinear functions of the response of TLP. The tensions of the tethers are also nonlinear functions of the displacement of TLP. Then the displacement, the velocity and the acceleration of TLP should be taken into account when loads are calculated. In addition, equations of motions should be set up on the instantaneous position. A theoretical model for analyzing the nonlinear behavior of a TLP with finite displacement is developed, in which multifold nonlinearities are taken into account, i.e., finite displacement, coupling of the six degrees of freedom, instantaneous position, instantaneous wet surface, free surface effects and viscous drag force. Based on the theoretical model, the comprehensive nonlinear differential equations are deduced. Then the nonlinear dynamic analysis of ISSC TLP in regular waves is performed in the time domain. The degenerative linear solution of the proposed nonlinear model is verified with existing published one. Furthermore, numerical results are presented, which illustrate that nonlinearities exert a significant influence on the dynamic responses of the TLP.
Resumo:
A set of exact one-dimensional solutions to coupled nonlinear equations describing the propagation of a relativistic ultrashort circularly polarized laser pulse in a cold collisionless and bounded plasma where electrons have an initial velocity in the laser propagating direction is presented. The solutions investigated here are in the form of quickly moving envelop solitons at a propagation velocity comparable to the light speed. The features of solitons in both underdense and overdense plasmas with electrons having different given initial velocities in the laser propagating direction are described. It is found that the amplitude of solitons is larger and soliton width shorter in plasmas where electrons have a larger initial velocity. In overdense plasmas, soliton duration is shorter, the amplitude higher than that in underdense plasmas where electrons have the same initial velocity.
Resumo:
Nonlinear X-wave formation at different pulse powers in water is simulated using the standard model of nonlinear Schrodinger equation (NLSE). It is shown that in near field X-shape originally emerges from the interplay between radial diffraction and optical Kerr effect. At relatively low power group-velocity dispersion (GVD) arrests the collapse and leads to pulse splitting on axis. With high enough power, multi-photon ionization (NIPI) and multi-photon absorption (MPA) play great importance in arresting the collapse. The tailing part of pulse is first defocused by MPI and then refocuses. Pulse splitting on axis is a manifestation of this process. Double X-wave forms when the split sub-pulses are self-focusing. In the far field, the character of the central X structure of conical emission (CE) is directly related to the single or double X-shape in the near field. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
The nonlinear behavior of a probe pulse propagating in a medium with electromagnetically induced transparency is studied both numerically and analytically. A new type of nonlinear wave equation is proposed in which the noninstantaneous response of nonlinear polarization is treated properly. The resulting nonlinear behavior of the propagating probe pulse is shown to be fundamentally different from that predicted by the simple nonlinear Schrodinger-like wave equation that considers only instantaneous Kerr nonlinearity. (c) 2005 Optical Society of America.
Experimental study of nonlinear switching characteristics of conventional 2×2 fused tapered couplers
Resumo:
The nonlinear switching characteristics of fused fiber directional couplers were studied experimentally. By using femtosecond laser pulses with pulse width of 100 fs and wavelength of about 1550 nm from a system of Ti:sapphire laser and optical parametric amplifier (OPA), the nonlinear switching properties of a null coupler and a 100% coupler were measured. The experimental results were coincident with the simulations based on nonlinear propagation equations in fiber by using super-mode theory. Nonlinear loss in fiber was also measured to get the injected power at the coupler. After deducting the nonlinear loss and input efficiency, the nonlinear switching critical peak powers for a 100% and a null fused couplers were calculated to be 9410 and 9440 W, respectively. The nonlinear loss parameter P_(N) in an expression of α_(NL)=αP/P_(N) was obtained to be P_(N)=0.23 W.
Resumo:
The pulse compression induced by cross-phase modulation in birefringent dispersion decreasing fiber is discussed theoretically by solving the coupled Schrodinger equations which include the contribution of the high-order non-linear effects, and third-order dispersion. In particular, it is found that a high quality compressed signal pulse can be obtained by a pump pulse of low intense through the technique. The dependence of optimum compression on the non-linear factor N, time delay tau(d) and the dispersive ratio f is also discussed in detail. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Low-temperature photoluminescence measurement is performed on an undoped AlxGa1-xN/GaN heterostructure. Temperature-dependent Hall mobility confirms the formation of two-dimensional electron gas (2DEG) near the heterointerface. A weak photoluminescence (PL) peak with the energy of similar to 79meV lower than the free exciton (FE) emission of bulk GaN is related to the radiative recombination between electrons confined in the triangular well and the holes near the flat-band region of GaN. Its identification is supported by the solution of coupled one-dimensional Poisson and Schrodinger equations. When the temperature increases, the red shift of the 2DEG related emission peak is slower than that of the FE peak. The enhanced screening effect coming from the increasing 2DEG concentration and the varying electron distribution at two lowest subbands as a function of temperature account for such behaviour.
Resumo:
We investigate solitary excitations in a model of a one-dimensional antiferromagnet including a single-ion anisotropy and a Dzyaloshinsky-Moriya antisymmetric exchange interaction term. We employ the Holstein-Primakoff transformation, the coherent state ansatz and the time variational principle. We obtain two partial differential equations of motion by using the method of multiple scales and applying perturbation theory. By so doing, we show that the motion of the coherent amplitude must satisfy the nonlinear Schrodinger equation. We give the single-soliton solution.
Resumo:
Problems involving coupled multiple space and time scales offer a real challenge for conventional frameworks of either particle or continuum mechanics. In this paper, four cases studies (shear band formation in bulk metallic glasses, spallation resulting from stress wave, interaction between a probe tip and sample, the simulation of nanoindentation with molecular statistical thermodynamics) are provided to illustrate the three levels of trans-scale problems (problems due to various physical mechanisms at macro-level, problems due to micro-structural evolution at macro/micro-level, problems due to the coupling of atoms/molecules and a finite size body at micro/nano-level) and their formulations. Accordingly, non-equilibrium statistical mechanics, coupled trans-scale equations and simultaneous solutions, and trans-scale algorithms based on atomic/molecular interaction are suggested as the three possible modes of trans-scale mechanics.
Resumo:
A two-dimensional (2-D) vortex-induced vibration (VIV) prediction model for high aspect ratio (LID) riser subjected to uniform and sheared flow is studied in this paper. The nonlinear structure equations are considered. The near wake dynamics describing the fluctuating nature of vortex shedding is modeled using classical van der Pol equation. A new approach was applied to calibrate the empirical parameters in the wake oscillator model. Compared the predicted results with the experimental data and computational fluid dynamic (CFD) results. Good agreements are observed. It can be concluded that the present model can be used as simple computational tool in predicting some aspects of VIV of long flexible structures. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
In this paper the authors prove that the generalized positive p selfadjoint (GPpS) operators in Banach space satisfy the generalized Schwarz inequality, solve the maximal dissipative extension representation of p dissipative operators in Banach space by using the inequality and introducing the generalized indefinite inner product (GIIP) space, and apply the result to a certain type of Schrodinger operator.
Resumo:
In this paper, a unified model for dislocation nucleation, emission and dislocation free zone is proposed based on the Peierls framework. Three regions are identified ahead of the crack tip. The emitted dislocations, located away from the crack tip in the form of an inverse pileup, define the plastic zone. Between that zone and the cohesive zone immediately ahead of the crack tip, there is a dislocation free zone. With the stress field and the dislocation density field in the cohesive zone and plastic zone being, respectively, expressed in the first and second Chebyshev polynomial series, and the opening and slip displacements in trigonometric series, a set of nonlinear algebraic equations can be obtained and solved with the Newton-Raphson Method. The results of calculations for pure shearing and combined tension and shear loading after dislocation emission are given in detail. An approximate treatment of the dynamic effects of the dislocation emission is also developed in this paper, and the calculation results are in good agreement with those of molecular dynamics simulations.
Resumo:
The problems of dislocation nucleation and emission from a crack tip are analysed based on Peierls model. The concept adopted here is essentially the same as that proposed by Rice. A slight modification is introduced here to identify the pure linear elastic response of material. A set of new governing equations is developed, which is different from that used by Beltz and Rice. The stress field and the dislocation density field can be expressed as the first and second Chebyshev polynomial series respectively. Then the opening and slip displacements can be expanded as the trigonometric series. The Newton-Raphson Method is used to solve a set of nonlinear algebraic equations. The new governing equations allow us to extend the analyses to the case of dislocation emission. The calculation results for pure shearing, pure tension and combined tension and shear loading are given in detail.
Resumo:
To gain some insight into the behaviour of low-gravity flows in the material processing in space, an approximate theory has been developed for the convective motion of fluids with a small Grashof number Gr. The expansion of the variables into a series of Gr reduces the Boussinesq equation to a system of weakly coupled linearly inhomogeneous equations. Moreover, the analogy concept is proposed and utilized in the study of the plate bending problems in solid mechanics. Two examples are investigated in detail, i. e. the 2-dimensional steady flows in either circular or square infinite closed cylinder, which is horizontally imposed at a specified temperature of linear distribution on the boundaries. The results for stream function ψ, velocity u and temperature T are provided. The analysis of the influences of some parameters such as the Grashof number Gr and the Prandtl number Pr, on motions will lead to several interesting conclusions. The theory seems to be useful for seeking for an analytical solutions. At least, it will greatly simplify the complicated problems originally governed by the Navier-Stokes equation including buoyancy. It is our hope that the theory might be applicable to unsteady or 3-dimensional cases in future.