62 resultados para connectivity conservation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A finite compact (FC) difference scheme requiring only bi-diagonal matrix inversion is proposed by using the known high-resolution flux. Introducing TVD or ENO limiters in the numerical flux, several high-resolution FC-schemes of hyperbolic conservation law are developed, including the FC-TVD, third-order FC-ENO and fifth-order FC-ENO schemes. Boundary conditions formulated need only one unknown variable for third-order FC-ENO scheme and two unknown variables for fifth-order FC-ENO scheme. Numerical test results of the proposed FC-scheme were compared with traditional TVD, ENO and WENO schemes to demonstrate its high-order accuracy and high-resolution.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

FSodium phosphate tellurite glasses in the system (NaPO3)(x)(TeO2)(1-x) were prepared and structurally characterized by thermal analysis, vibrational spectroscopy, X-ray photoelectron spectroscopy (XPS) and a variety of complementary solid-state nuclear magnetic resonance (NMR) techniques. Unlike the situation in other mixed-network-former glasses, the interaction between the two network formers tellurium oxide and phosphorus oxide produces no new structural units, and no sharing of the network modifier Na2O takes place. The glass structure can be regarded as a network of interlinked metaphosphate-type P(2) tetrahedral and TeO4/2 antiprismotic units. The combined interpretation of the O 1s XPS data and the P-31 solid-state NMR spectra presents clear quantitative evidence for a nonstatistical connectivity distribution. Rather the formation of homootomic P-O-P and Te-O-Te linkages is favored over mixed P-O-Te connectivities. As a consequence of this chemical segregation effect, the spatial sodium distribution is not random, as also indicated by a detailed analysis of P-31/No-23 rotational echo double-resonance (REDOR) experiments. ACHTUNGTRENUNG(TeO2)1 x were prepared and structurally characterized by thermal analysis,vibrat ional spectroscopy,X-ray photoelectron spectroscopy (XPS) and a variety of complementary solid-state nuclear magnetic resonance (NMR) techniques. Unlike the situation in other mixed-network-former glasses,the interaction between the two network formers tellurium oxide and phosphorus oxide produces no new structural units,and no sharing of the network modifier Na2O takes place. The glass structure can be regarded as a network of interlinked metaphosphate-type P(2) tetrahedral and TeO4/2 antiprismatic units. The combined interpretation of the O 1s XPS data and the 31P solid-state NMR spectra presents clear quantitative evidence for a nonstatistical connectivity distribution. Rather,the formation of homoatomic P O P and Te O Te linkages is favored over mixed P O Te connectivities. As a consequence of this chemical segregation effect,the spatial sodium distribution is not random,as also indicated by a detailed analysis of 31P/23Na rotational echo double-resonance (REDOR) experiments.

Relevância:

20.00% 20.00%

Publicador: