107 resultados para Western China


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Rhagophthalmus fugongensis Li & Liang and Rhagophthalmus lufengensis Li & Ohba are introduced as new to science. The first record of R. tonkineus in China is provided. The male genitalia of R. gibbosulus and R. giganteus are described and illustrated. The female and larva of R. giganteus and the female of R. semisulcatus are illustrated. The distribution of Rhagophthalmus is discussed and a rectification of the relative arrangement of different parts of the male genitalia is provided (the base-piece is on the ventral side of the male genitalia, and the parameres on the dorsal side).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the world-wide zoogeographic division, there has been no consentaneous understanding about the delimitation between palaearctic and oriental realms in western China. In this study, we will discuss the division based on amphibian distribution in Shaanxi, Gansu, Sichuan, Yunnan, and Tibet according to species coefficient similarity between each zoogeographic province. The results show that the northern border lies from Qinling Mountains-Feng Xian (Shaanxi)-Debu (Gansu)-Aba (Sichuan)-Batang-Bomi (Tibet), to Linzhi districts, and the southern border is from Taibai-Feng Xian in Shaanxi-Wen Xian (Gansu)-Songpan-Kangding-Daocheng (Sichuan), to Zhongdian-Gongshan in Yunnan, and westward to Motuo and Bomi district in Tibet. (c) 2008 National Natural Science Foundation of China and Chinese Academy of Sciences. Published by Elsevier Limited and Science in China Press. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new species of Tripogon from western China (Sichuan Province), T. debilis L. B. Cai, is described and illustrated. This species is similar to both T. chinensis (Franchet) Hackel and T sichuanicus S. M. Phillips & S. L. Chen, but distinguished from these two species by its pendent pi spikes, relatively tong glumes and lemma awns, denticulate upper glumes, and its paleas strikingly shorter than the lemmas.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Grown in arid regions of western China the cyanobacterium Nostoc flagelliforme - called fa cai in Mandarin and fat choy in Cantonese - is wild-harvested and used to make soup consumed during New Year's celebrations. High prices, up to $125 USD/kg, led to overharvesting in Inner Mongolia, Ningxia, Gansu, Qinghai, and Xinjiang. Degradation of arid ecosystems, desertification, and conflicts between Nostoc harvesters and Mongol herdsman concerned the Chinese environmental authorities, leading to a government ban of Nostoc commerce. This ban stimulated increased marketing of a substitute made from starch. We analysed samples purchased throughout China as well as in Chinese markets in the United States and the United Kingdom. Some were counterfeits consisting of dyed starch noodles. A few samples from California contained Nostoc flagelliforme but were adulterated with starch noodles. Other samples, including those from the United Kingdom, consisted of pure Nostoc flagelliforme. A recent survey of markets in Cheng Du showed no real Nostoc flagelliforme to be marketed. Real and artificial fa cai differ in the presence of beta-N-methylamino-L-alanine (BMAA). Given its status as a high-priced luxury food, the government ban on collection and marketing, and the replacement of real fa cai with starch substitutes consumed only on special occasions, it is anticipated that dietary exposure to BMAA from fa cai will be reduced in the future in China.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Two new species, Saxifraga xiaozhongdianensis J. T. Pan and S. ludingensis J. T. Pan, from the Saxifragaceae in China are described and illustrated. Of these, S. xiaozhongdianensis is endemic to Zhongdian, Yunnan, and is related to S. brachyphylla Franchet. It differs from S. brachyphylla in the sepals adaxially dark brown glandular-villose and the petals basally subauriculate. Saxifraga ludingensis occurs in Luding, Sichuan, and is very similar to S. egregioides J. T. Pan and S. stellariifolia Franchet. It differs from S. egregioides in the stems brown glandular-villose, the cauline leaves adaxially brown glandular-villose, the sepals spreading in anthesis and abaxially brown glandular-villose, and the petals 5-veined. It differs from S. stellariifolia in the leaves cordate and abaxially glabrous, the sepals abaxially brown glandular-villose, and the petals 4-callose and 5-veined. Saxifraga xiaozhongdianensis and S. ludingeasis are apparently endemic to western China and belong to Saxifraga sect. Ciliatae Haworth, emend. J. T. Pan.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

在人类活动导致全球变暖的前提下,由于全球气温的升高,地表水分加速向空中蒸发。从20世纪70年代至今,地球上严重干旱地区的面积几乎扩大了一倍。这一增长的一半可归因于气温升高而不是降雨量下降,因为实际上同期全球平均降水量还略有增长。干旱对陆地植物和农林生态系统产生深远影响,并已成为全球变化研究的一个重要方面。位于青藏高原东部的川西亚高山针叶林是研究气候变暖对陆地生态系统影响的重要森林类型。森林采伐迹地、人工林下和林窗环境作为目前该区人工造林和森林更新的重要生境,其截然不同的光环境对亚高山针叶林更新和森林动态有非常重要的影响。凋落物产生的化感物质可通过影响种子萌发和早期幼苗的定居而影响种群的建立和更新,而人工林和自然林物种以及更新速度的差异性也都受凋落物的影响。 云杉是川西亚高山针叶林群落的重要树种之一,在维持亚高山森林的景观格局和区域生态安全方面具有十分重要的作用,其自然更新能力及其影响机制一直是研究的热点问题。本试验以云杉种子和2年生幼苗为研究对象,从萌发、根尖形态、幼苗生长、光合作用、渗透调节和抗氧化能力等方面研究了不同光环境下水分亏缺和凋落物水浸液对云杉种子和幼苗生长的影响。旨在从更新的角度探讨亚高山针叶林自然更新的过程,其研究成果可在一定程度上为川西亚高山针叶林更新提供科学依据,同时也可为林业生产管理提供科学指导。主要研究结论如下: 水分亏缺在生长形态、光合作用、抗氧化能力、活性氧化对云杉幼苗都有显著影响。总体表现为,水分亏缺导致了云杉幼苗的高度、地径、单株总生物量降低,增加了地下部分的生长;水分亏缺显著降低了云杉叶片中相对含水量、光合色素、叶氮含量,净光合速率和最大量子产量(Fv/Fm),提高了幼苗叶片中膜脂过氧化产物(MDA)的含量;水分亏缺提高了幼苗叶片中过氧化氢(H2O2)含量,超氧荫离子(O2-)生成速率以及脯氨酸和抗氧化系统的活性(ASA, SOD, CAT, POD, APX和GR)。从这些结果可知,植物在遭受水分亏缺导致的伤害时,其自身会形成防御策略,并通过改变形态和生理方面的特性以减轻害。但是,这种自我保护机制依然不能抵抗严重水分亏缺对植物的伤害。 模拟林下低光照条件显著增加单株植物的地上部分生长,尤其是其叶片的比叶面积(叶面积/叶干重),同时其光合色素含量和叶片相对含水量也显著增加,这些改变直接导致植株光合速率和生物量的增加。同时,与高光照水平相比,低光照幼苗的膜脂过氧化产物(MDA)和活性氧物质均较低,显示出低光照比高光照水平对植物的更低的氧化伤害。尽管低光照也导致大部分抗氧化酶活性降低,但这正显示出植物遭受低的氧化伤害,更印证了前面的结论。 凋落物水浸液影响了云杉种子的萌发和根系的生长,更在形态、光合作用、抗氧化能力、活性氧物质以及叶氮水平上显著影响了云杉幼苗,其中,以人工纯林凋落物的影响更有强烈。具体表现在,种子萌发速率和萌发种子幼根的长度表现为对照>自然林处理>人工纯林;凋落物水浸液抑制种子分生区和伸长区的生长,人工林处理更降低了根毛区的生长,使根吸水分和养分困难。对2年生幼苗的影响主要表现在叶绿素含量、光合速率以及叶氮含量的降低;膜脂过氧化产物、活性氧物质和抗氧化酶系统的显著增加。同样的,人工纯林处理对云杉幼苗的影响显著于自然林处理。 在自然生态系统中,由于全球变暖气温升高导致的水分亏缺和森林凋落物都存在森林的砍伐迹地,林窗和林下环境中。我们的研究表明,与迹地或林窗强光照比较,林下的低光照环境由于为植物的生长营造了较为湿润的微环境,因此水分亏缺在林下对云杉幼苗造成的影响微弱。这可以从植物的形态、光合速率以及生物量积累,过氧化伤害和抗氧化酶系统表现出来。另一方面,凋落物水浸液在模拟林下低光照环境对植物的伤害也微弱于强光照环境,这与强光照环境高的水分散失导致环境水分亏缺有关;而人工纯林处理对云杉幼苗的伤害比对照和自然林处理显示出强烈的抑制作用。 Under the pre-condition of global warming resulted from intensive human activities, water in the earth’s surface rapidly evaporates due to the increase of global air temperature. From 1970s up to now, the area of serious drought in the world is almost twice as ever. This increase might be due to the increasing air temperature and not decreasing rainfall because global average rainfall in the corresponding period slightly is incremental. Drought will have profound impacts on terrestrial and agriculture-forest system and has also become the important issue of global change research. The subalpine coniferous forests in the eastern Qinghai-Tibet Plateau provide a natural laboratory for the studying the effects of global warming on terrestrial ecosystems. The light environment significantly differs among cutting blanks, forest gap and understory, which is particularly important for plant regeneration and forest dynamics in the subalpine coniferous forests. Picea asperata is one of the keystone species of subalpine coniferouis forests in western China, and it is very important in preserving landscape structure and regional ecological security of subalpine forests. The natural regeneration capacities and influence mechanism of Picea asperata are always the hot topics. In the present study, the short-term effects of two light levels (100% of full sunlight and 15% of full sunlight), two watering regimes (100% of field capacity and 30% of field capacity), two litter aqueous extracts (primitive forest and plantation aqueous extracts) on the seed germination, early growth and physiological traits of Picea asperata were determined in the laboratory and natural greenhouse. The present study was undertaken so as to give a better understanding of the regeneration progress affected by water deficit, low light and litter aqueous extracts. Our results could provide insights into the effects of climate warming on community composition and regeneration behavior for the subalpine coniferous forest ecosystem processes, and provide scientific direction for the forest production and management. Water deficit had significant effects on growth, morphological, physiological and biochemical traits of Picea asperata seedlings. Water deficit resulted in the decrease in height, basal diameter, total biomass and increase in under-ground development; water deficit significantly reduced the needle relative water content, photosynthetic pigments, needle nitrogen concentration, net photosynthetic rate and the maximum potential quantum yield of photosynthesis (Fv/Fm), and increased the degree of lipid peroxidation (MDA) in Picea asperata seedlings; water deficit also increased the rate of superoxide radical (O2-) production, hydrogen peroxide (H2O2) content, free proline content and the activities of antioxidant systems (ASA, SOD, POD, CAT, APX and GR) in Picea asperata seedlings. These results indicated that some protective mechanism was formed when plants suffered from drought stress, but the protection could not counteract the harm resulting from the serious drought stress on them. Low light in the understory significantly increased seedling above-ground development, especially the species leaf area (SLA), and photosynthetic pigments and relative needle content. These changes resulted in the increase in net photosynthetic rate and total biomass. Moreover, the lower MDA content and active oxygen species (AOS) (H2O2 and O2-) in low light seedlings suggested that low light had weaker oxidative damage as compared to high light. Lower antioxidant enzymes activities in low light seedlings indicated the weaker oxidative damage on Picea asperata seedlings than high light seedlings, which was correlative with the changes in MDA and AOS. Litter aqueous extracts affected seed germination and root system of Picea asperata seedlings. Significant changes in growth, photosynthesis, antioxidant activities, active oxygen species and leaf nitrogen concentration were also found in Picea asperata seedlings, and plantation treatment showed the stronger effects on these traits than those in control and primitive forest treatment. The present results indicated that seed germination and radicle length parameters in control were superior to those in primitive forest treatment, and those of primitive forest treatment were superior to plantation treatment; litter aqueous extracts inhibited the meristematic and elongation zone, and plantation treatment caused a decrease in root hairs so as to be difficult in absorbing water and nutrient in root system. On the other hand, litter aqueous extracts significantly decreased chlorophyll content, net photosynthetic rate and leaf nitrogen concentration of Picea asperata seedlings; MDA, AOS and antioxidant system activities were significantly increased in Picea asperata seedlings. Similarly, plantation treatment had more significant effect on Picea asperata seedlings as compared to primitive forest treatment. In the nature ecosystem, water deficit resulted from elevating air temperature and litter aqueous extract may probably coexist in the cutting blank, forest gap and understory. Our present study showed that water deficit had weaker effects on low light seedlings in the understory as compared to high light seedlings in the cutting blank and forest gap. The fact was confirmed from seedlings growth, gas exchange and biomass accumulation, peroxidation and antioxidant systems. This might be due to that low light-reduced leaf and air temperatures, vapour-pressure deficit, and the oxidative stresses can aggravate the impact of drought under higher light. On the other hand, litter aqueous extracts in the low light had weaker effects on the Picea asperata seedlings than those at high light level, which might be correlative to the water evapotranspiration under high light. Moreover, plantation litter aqueous extracts showed stronger inhibition for seed germination and seedling growth than control and primitive forest treatments.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

青杨作为一个本土树种,能较好的适应潮湿和寒冷的环境,对中国西部的人工造林有着重要的参考价值。在本实验中,选取7个中国西南地区分布的自然群体,用ISSR(inter-simple sequence repeats)作为分子标记研究其遗传多样性水平和遗传结构。通过筛选的8个ISSR引物,获得了158条清晰可重复的DNA条带,其中有156条具有多样性(占98.7%)。平均的Nei’s遗传多样性(h)为0.331;遗传分化系数(GST)为0.477,这表明有47.7%的遗传多样性发生在群体间。这种高水平的分化可能是由于当地复杂多变的地形和气候特点阻碍了基因流而引起的。此外在这7个青杨群体中,遗传距离和地理距离并未体现出有显著相关性(r=0.3122, P>0.05)。联合遗传距离和地理距离分析,鉴定出两处低水平基因交流的地区, 探讨其遗传障碍形成原因。 As a native species to China, Populus cathayana Rehd is well-adapted to the wet and cold environments where it occurs. It is considered to be an important reforestation species in western China. In the present study, we surveyed the level of genetic variation and the pattern of genetic structure in seven natural populations of P. cathayana, originating from the southeastern Qinghai-Tibetan Plateau of China, by using ISSR (inter-simple sequence repeats) markers. Based on eight primers, 158 clear and reproducible DNA fragments were generated, of which 156 (98.7%) were polymorphic. The average value of Nei's gene diversity (h) equaled 0.331. The coefficient of genetic differentiation (GST) equaled 0.477, which means that 47.7% of the total molecular variance existed among populations. Such a high level of divergence present among populations may be caused by the complex topography and variable climatic conditions present in the southeastern Qinghai-Tibetan Plateau which effectively restrict gene flow. Moreover, there is a lack of significant association between genetic and geographical distances (r=0.3122, P>0.05) in the populations of P. cathayana. The application of a novel method, which combines geographical coordinates and genetic differentiation to detect barriers for gene flow, allowed us to identify two zones of lowered gene flow.