70 resultados para Weak-field approximation
Resumo:
The coupled differential recurrence equations for the corrections to the paraxial approximation solutions in transversely nonuniform refractive-index media are established in terms of the perturbation method. All the corrections (including the longitudinal field corrections) to the paraxial approximation solutions are presented in the weak-guidance approximation. As a concrete application, the first-order longitudinal field correction and the second-order transverse field correction to the paraxial approximation of a Gaussian beam propagating in a transversely quadratic refractive index medium are analytically investigated. (C) 1999 Optical Society of America [S0740-3232(99)00310-5].
Resumo:
The coupling of mesoscopic strength distribution and stress fluctuation on damage evolution and rupture are examined. The numerical simulations show that there is only weak stress fluctuation at the initial damage stage when the mean field approximation is in effect. As the damage fraction becomes larger than the threshold value, the fluctuation is amplified significantly, and damage localization appears. The coupling between stress fluctuation, disordered heterogeneity and the damage localization may play an essential role in catastrophic rupture. (C) 2003 Elsevier Ltd. All rights reserved.
Resumo:
In order to explore a prior warning to catastrophic rupture of heterogeneous media, like rocks, the present study investigates the relationship between surface strain localization and catastrophic rupture. Instrumented observations on the evolution of surface strain field and the catastrophic rupture of a rock under uniaxial compression were carried out. It is found that the evolution of surface strain field displays two phases: at the early stage, the strain field keeps nearly uniform with weak fluctuations increasing slowly; but at the stage prior to catastrophic rupture, a certain accelerating localization develops and a localized zone emerges. Based on the measurements, an analysis was performed with local mean-field approximation. More importantly, it is found that the scale of localized zone is closely related to the catastrophic rupture strain and the rupture strain can be calculated in accord with the local-mean-field model satisfactorily. This provides a possible clue to the forecast of catastrophic rupture. (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Based on the effective-mass model and the mean-field approximation, we investigate the energy levels of the electron and hole states of the Mn-doped ZnO quantum wires (x=0.0018) in the presence of the external magnetic field. It is found that either twofold degenerated electron or fourfold degenerated hole states split in the field. The splitting energy is about 100 times larger than those of undoped cases. There is a dark exciton effect when the radius R is smaller than 16.6 nm, and it is independent of the effective doped Mn concentration. The lowest state transitions split into six Zeeman components in the magnetic field, four sigma(+/-) and two pi polarized Zeeman components, their splittings depend on the Mn-doped concentration, and the order of pi and sigma(+/-) polarized Zeeman components is reversed for thin quantum wires (R < 2.3 nm) due to the quantum confinement effect.
Resumo:
Reactions of Ln(III) acetate (Ln = Pr and Nd) and a polydentate Schiff-base in a mixture of methanol and acetonitrile resulted in the unprecedented assembly of novel Ln(10) aggregates containing two Ln(5) pentagons templated by mu(5)-CO32-, introduced via spontaneous fixation of atmospheric carbon dioxide. Magnetic analysis using an expression including the ligand field effects and molecular field approximation indicates weak antiferromagnetic coupling between the metal ions. This synthetic approach may represent a promising new route toward the design of new lanthanide clusters and novel multifunctional materials.
Resumo:
Large earthquakes can be viewed as catastrophic ruptures in the earth’s crust. There are two common features prior to the catastrophe transition in heterogeneous media. One is damage localization and the other is critical sensitivity; both of which are related to a cascade of damage coalescence. In this paper, in an attempt to reveal the physics underlying the catastrophe transition, analytic analysis based on mean-field approximation of a heterogeneous medium as well as numerical simulations using a network model are presented. Both the emergence of damage localization and the sensitivity of energy release are examined to explore the inherent statistical precursors prior to the eventual catastrophic rupture. Emergence of damage localization, as predicted by the mean-field analysis, is consistent with observations of the evolution of damage patterns. It is confirmed that precursors can be extracted from the time-series of energy release according to its sensitivity to increasing crustal stress. As a major result, present research indicates that the catastrophe transition and the critical point hypothesis (CPH) of earthquakes are interrelated. The results suggest there may be two cross-checking precursors of large earthquakes: damage localization and critical sensitivity.
Resumo:
In this paper, an elastic and statistically brittle (ESB) model is applied to the process of damage evolution induced catastrophic rupture and the influence of localization and softening on catastrophic rupture is discussed. According to the analysis, the uncertainty of catastrophic rupture should be attributed to the unknown scale of localized zone. Based on the elastic and statistically brittle model but local mean field approximation, the relation between the scale of localized zone and catastrophic rupture is obtained and then justified with experiments. These results can not only give a deeper understanding of the mechanism governing catastrophic rupture, but also provide a possible tool to foresee the occurrence of catastrophic rupture.
Resumo:
We investigate experimentally the high-order harmonic generation from aligned CO2 molecules and demonstrate that the modulation inversion of the harmonic yield with respect to molecular alignment can be altered dramatically by fine-tuning the intensity of the driving laser pulse for harmonic generation. The results can be modeled by employing the strong field approximation including a ground state depletion factor. The laser intensity is thus proved to be a parameter that can control the high-harmonic emission from aligned molecules.
Resumo:
We address the influence of the orbital symmetry and the molecular alignment with respect to the laser-field polarization on laser-induced nonsequential double ionization of diatomic molecules, in the length and velocity gauges. We work within the strong-field approximation and assume that the second electron is dislodged by electron-impact ionization, and also consider the classical limit of this model. We show that the electron-momentum distributions exhibit interference maxima and minima due to electron emission at spatially separated centers. The interference patterns survive integration over the transverse momenta for a small range of alignment angles, and are sharpest for parallel-aligned molecules. Due to the contributions of the transverse-momentum components, these patterns become less defined as the alignment angle increases, until they disappear for perpendicular alignment. This behavior influences the shapes and the peaks of the electron-momentum distributions.
Resumo:
A pseudo-spin model is intended to describe the physical dynamics of unbound electrons in the wall of cytoskeletal microtubule (MT). Due to the inherent symmetry of the structure and the electric properties in the MT, one may treat it as a one-dimensional ferroelectric system, and describe the nonlinear dynamics of dimer electric dipoles in one protofilament of the MT by virtue of the double-well potential. Consequently, the physical problem has been mapped onto the pseudo-spin system, and the mean-field approximation has been taken to get some physical results.
Resumo:
引入复高斯函数对衍射受限的圆孔进行了复高斯分解,得到了波差高斯光束远场衍射的近似解析式。在各种参量条件下,近似解析式所表示的衍射图样与严格的夫琅和费衍射积分的衍射图样完全一致,这表明用此解析式表征远场衍射是正确的。它的形式相对简单,为计算带来极大的方便。基于此,对有波差的高斯光束的远场发散度进行了深入的研究,检验了确定参量的光束随距离的改变而发散度不被改变的特性;同时,探讨了在圆孔限制下,发散度随高斯光束的束腰及波差的改变而变化的关系曲线,结果表明,这两个参量是影响发散度的主要因素。
Resumo:
The electronic structure and Lande electron g-factors of manganese-doped HgTe quantum spheres are investigated, in the framework of the eight-band effective-mass model and the mean-field approximation. It is found that the electronic structure evolves continuously from the zero-gap configuration to an open-gap configuration with decreasing radius. The size dependence of electron g-factors is calculated with different Mn-doped effective concentration, magnetic field, and temperature values, respectively. It is found that the variations of electron g-factors are quite different for small and large quantum spheres, due to the strong exchange-induced interaction and spin-orbit coupling in the narrow-gap DMS nanocrystals. The electron g-factors are zero at a critical point of spherical radius R-c; however, by modulating the nanocrystal size their absolute values can be turned to be even 400 times larger than those in undoped cases. Copyright (c) EPLA, 2008.
Resumo:
We deduce the eight-band effective-mass Hamiltonian model for a manganese-doped ZnSe quantum sphere in the presence of the magnetic field, including the interaction between the conduction and valence bands, the spin-orbit coupling within the valence bands, the intrinsic spin Zeeman splitting, and the sp-d exchange interaction between the carriers and magnetic ion in the mean-field approximation. The size dependence of the electron and hole energy levels as well as the giant Zeeman splitting energies are studied theoretically. We find that the hole giant Zeeman splitting energies decrease with the increasing radius, smaller than that in the bulk material, and are different for different J(z) states, which are caused by the quantum confinement effect. Because the quantum sphere restrains the excited Landau states and exciton states, in the experiments we can observe directly the Zeeman splitting of basic states. At low magnetic field, the total Zeeman splitting energy increases linearly with the increasing magnetic field and saturates at modest field which is in agreement with recent experimental results. Comparing to the undoped case, the Zeeman splitting energy is 445 times larger which provides us with wide freedom to tailor the electronic structure of DMS nanocrystals for technological applications.
Resumo:
A shape phase transition is demonstrated to occur in W-190 by applying the projected shell model, which goes beyond the usual mean-field approximation. Rotation alignment of neutrons in the high-j, i(13/2) orbital drives the yrast sequence of the system, changing suddenly from prolate to oblate shape at angular momentum 10h. We propose observables to test the picture.
Resumo:
The isospin dependence of the effective pairing interaction is discussed on the basis of the Bardeen, Cooper, and Schrieffer theory of superfluid asymmetric nuclear matter. It is shown that the energy gap, calculated within the mean field approximation in the range from symmetric nuclear matter to pure neutron matter, is not linearly dependent on the symmetry parameter owing to the nonlinear structure of the gap equation. Moreover, the construction of a zero-range effective pairing interaction compatible with the neutron and proton gaps in homogeneous matter is investigated, along with some recent proposals of isospin dependence tested on the nuclear data table.