106 resultados para WC-CoCr
Resumo:
A new crystal of aluminophosphate, AIPO(4)(.)H(2)O, is synthesized from two-batch aqueous solution under hydrothermal conditions. Three types of the crystal habits, i.e. the tetragonal double pyramid, the tetragonal prism and the plate-type tetragonal prism, are found from batch-A solution. Two types of the crystal habits, i.e. the hexagonal pyramid and the strip-type tetragonal prism, are found from batch-B solution. The change of crystal morphology is originated from the fluctuation of the synthesis conditions, such as the supersaturation, the temperature and the impurity content. It causes change of the step energies, the defect density and the step roughness, and further, change of the growth rates. Since the crystal morphology is sensitive to the mass transport mechanism, the crystal habits could be changed under the microgravity.
Resumo:
An investigation into influence of obstructions on premixed flame propagation has been carried out in a semi-open tube. It is found that there exists flame acceleration and rising overpressure along the path of flame due to obstacles. According to the magnitude of flame speeds, the propagation of flame in the tube can be classified into three regimes: the quenching, the choking and the detonation regimes. In premixed flames near the flammability limits, the flame is observed first to accelerate and then to quench itself after propagating past a certain number of obstacles. In the choking regime, the maximum flame speeds are somewhat below the combustion product sound speeds, and insensitive to the blockage ratio. In the more sensitive mixtures, the transition to detonation (DDT) occurs when the equivalence ratio increases. The transition is not observed for the less sensitive mixtures. The dependence of overpressure on blockage ratio is not monotonous. Furthermore, a numerical study of flame acceleration and overpressure with the unsteady compressible flow model is performed, and the agreement between the simulation and measurements is good.
Resumo:
There are very strong interests in improving the high-temperature wear resistance of the y-TiAl intermetallic alloy, especially when applied as tribological moving components. In this paper, microstructure, high-temperature dry sliding wear at 600 degrees C and isothermal oxidation at 1000 degrees C on ambient air of laser clad gamma/W2C/TiC composite coatings with different constitution of Ni-Cr-W-C precursor mixed powders on TiAl alloy substrates have been investigated. The results show that microstructure of the laser fabricated composite coatings possess non-equilibrium microstructure consisting of the matrix of nickel-base solid solution gamma-NiCrAl and reinforcements of TiC, W2C and M23C6 carbides. Higher wear resistance than the original TiAl alloy is achieved in the composite coatings under high-temperature wear test conditions. However, the oxidation resistance of the laser clad gamma/W2C/TiC composite coatings is deceased. The corresponding mechanisms resulting in the above behaviors of the laser clad composite coatings are discussed. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
A new thermoplastic-photoconductor laser holographic recording system has been used for real-time and in situ observation of alpha-LiIO3 crystal growth. The influence of crystallization-driven convection on the concentration stratification in solution has been studied under gravity field. It is found that the stratification is closely related to the seed orientation of alpha-LiIO3 crystal. When the optical axis of crystal seed C is parallel to the gravity vector g, the velocity of the concentration stratification is two times larger than that in the case of C perpendicular-to g. It needs 40 h for the crystalline system of alpha-LiIO3 to reach stable concentration distribution (expressed as tau) at 47.6-degrees-C. The time tau is not sensitive to the seed orientation. Our results provide valuable data for designing the crystal growth experiments ia space.
Resumo:
In order to obtain the distribution rules of in situ stress and mining-induced stress of Beiminghe Iron Mine, the stress relief method by overcoring was used to measure the in situ stress, and the MC type bore-hole stress gauge was adopted to measure the mining-induced stress. In the in situ stress measuring, the technique of improved hollow inclusion cells was adopted, which can realize complete temperature compensation. Based on the measuring results, the distribution model of in situ stress was established and analyzed. The in situ stress measuring result shows that the maximum horizontal stress is 1.75-2.45 times of vertical stress and almost 1.83 times of the minimum horizontal stress in this mineral field. And the mining-induced stress measuring result shows that, according to the magnitude of front abutment pressure the stress region can be separated into stress-relaxed area, stress-concentrated area and initial stress area. At the -50 m mining level of this mine, the range of stress-relaxed area is 0-3 m before mining face; the range of stress-concentrated area is 3-55 m before mining face, and the maximum mining-induced stress is 16.5-17.5 MPa, which is 15-20 m from the mining face. The coefficient of stress concentration is 1.85.
Resumo:
向Ni60+25wt.% WC合金粉末中加入适量In2O3,选取合适的工艺参数,采用激光熔覆技术在A3#钢表面上获得了无气孔的高质量熔覆层。对熔覆层显微组织进行了观察和分析。In2O3能够减少Ni60+25wt.%WC激光熔覆层气孔的原因在于加入适当比例的In2O3后能够抑制WC的分解,从而减少熔池内C的含量,减小了熔池内形成CO和CO2的可能性。
Resumo:
Between October 1999 and April 2000, WC surveyed the waterbirds at Lake Lashihai, China. A total of 52 species were recorded, of which one species was a resident, 34 were winter visitors, and 17 were passage migrants. Species richness was highest in November. Passage migrants mainly occurred in October, November, and April, and they stayed longer at the lake during their autumn migration than during the spring migration. The seasonal distribution pattern of total numbers of all waterbirds was bimodal. One peak occurred between late December and early January, and the other in middle March. The seasonal distribution patterns of 15 common species have been classified a. bimodal, unimodal, or irregular. The numbers of five common species were variable in middle winter, and their numerical Change in contiguous weeks were more than 30%, suggesting that local movements might be frequent.
Resumo:
Our studies investigated the physico-chemical properties of alkaline phosphatase excreted by D. magna. This cladoceran mainly released alkaline phosphatase, though it also released a small amount of acid phosphatase. The alkaline phosphatase showed a broad pH optimum (8.05-10.0), and had a broad optimum temperature (30-35 degrees C) with a temperature coefficient (Q(10)) of 2.45. The K-m of the enzyme is 0.15 +/- 0.02 mM when p-nitrophenyl phosphate is used as a substrate, and the V-max is 0.43 +/- 0.01 mu M pNP mg(-1) DW h(-1). Even though alkaline phosphatase had been incubated in chloroform saturated with WC medium for 13 days, its activity was 54% that of the original. The enzyme was strongly inactivated by EDTA, and appeared to be zinc dependent. The alkaline phosphatase activity remained constant when D. magna was fed different quantities of Chlorella sp. The sensitivity of D. magna phosphatase activity to phosphate was time-dependent. During the first 16 hrs, the enzyme was insensitive to phosphate addition, after 24 hrs incubation the enzyme became sensitive to phosphate addition.
Resumo:
E2SiO5 thin films were fabricated on Si substrate by reactive magnetron sputtering method with subsequent annealing treatment. The morphology properties of as-deposited films have been studied by scanning electron microscope. The fraction of erbium is estimated to be 23.5 at% based on Rutherford backscattering measurement in as-deposited Er-Si-O film. X-ray diffraction measurement revealed that Er2SiO5 crystalline structure was formed as sample treated at 1100 degrees C for 1 h in O-2 atmosphere. Through proper thermal treatment, the 1.53 mu m Er3+-related emission intensity can be enhanced by a factor of 50 with respect to the sample annealed at 800 degrees C. Analysis of pump-power dependence of Er3+ PL intensity indicated that the upconversion phenomenon could be neglected even under a high photon flux of 10(21) (photons/cm(2)/sec). Temperature-dependent photoluminescence (PL) of Er2SiO5 was studied and showed a weak thermal quenching factor of 2. Highly efficienct photoluminescence of Er2SiO5 films has been demonstrated with Er3+ concentration of 10(22)/cm(3), and it opens a promising way towards future Si-based light source for Si photonics. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
The idler is separated from the co-propagating pump in a degenerate four-wave mixing (DFWM) with a symmetrical parametric loop mirror (PALM), which is composed of two identical SOAs and a 70 m highly-nonlinear photonic crystal fiber (HN-PCF). The signal and pump are coupled into the symmetrical PALM from different ports, respectively. After the DFWM based wavelength conversion (WC) in the clockwise and anticlockwise, the idler exits from the signal port, while the pump outputs from its input port. Therefore, the pump is effectively suppressed in the idler channel without a high-speed tunable filter. Contrast to a traditional PALM, the DFWM based conversion efficiency is increased greatly, and the functions of the amplification and the WC are integrated in the smart SOA and HN-PCF PALM. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
This paper proposes smart universal multiple-valued (MV) logic gates by transferring single electrons (SEs). The logic gates are based on MOSFET based SE turnstiles that can accurately transfer SEs with high speed at high temperature. The number of electrons transferred per cycle by the SE turnstile is a quantized function of its gate voltage, and this characteristic is fully exploited to compactly finish MV logic operations. First, we build arbitrary MV literal gates by using pairs of SE turnstiles. Then, we propose universal MV logic-to-value conversion gates and MV analog-digital conversion circuits. We propose a SPICE model to describe the behavior of the MOSFET based SE turnstile. We simulate the performances of the proposed gates. The MV logic gates have small number of transistors and low power dissipations.
Resumo:
A CMOS voltage-mode multi-valued literal gate is presented. The ballistic electron transport characteristic of nanoscale MOSFETs is smartly used to compactly achieve universal radix-4 literal operations. The proposed literal gates have small numbers of transistors and low power dissipations, which makes them promising for future nanoscale multi-valued circuits. The gates are simulated by HSPICE.
Resumo:
Silicon nitride films were deposited by plasma-enhanced chemical-vapour deposition. The films were then implanted with erbium ions to a concentration of 8 x 10(20) cm(-3). After high temperature annealing, strong visible and infrared photoluminescence (PL) was observed. The visible PL consists mainly of two peaks located at 660 and 750 nm, which are considered to originate from silicon nanocluster (Si-NCs) and Si-NC/SiNx interface states. Raman spectra and HRTEM measurements have been performed to confirm the existence of Si-NCs. The implanted erbium ions are possibly activated by an energy transfer process, leading to a strong 1.54 mu m PL.