264 resultados para ULTRAVIOLET-ABSORPTION SPECTRA
Resumo:
YAlO3 single crystal doped with Ce3+ at concentration 1% was grown by the temperature gradient technique. The as-grown crystal was pink. After H-2 annealing or air annealing at 1400degreesC for 20 h, the crystal was turned into colorless. We concluded there were two kinds of color centers in the as-grown crystal. One is F+ center attributed to absorption band peaking at about 530 nm, the other is O- center attributed to absorption band peaking at about 390 nm. This color centers model can be applied in explaining the experiment phenomena including the color changes, the absorption spectra changes, and the light yield changes of Ce:YAP crystals before and after annealing. (C) 2004 American Institute of Physics.
Resumo:
The electronic structures and absorption spectra for the perfect PbMoO4 crystal and the crystal containing lead vacancy V-Pb(2-) with lattice structure optimized are calculated using density functional theory code CASTEP. The calculated absorption spectra of the PbMoO4 crystal containing V-Pb(2-) exhibit three absorption bands peaking at 2.0 eV (620 nm), 3.0 eV (413 run) and 3.3 eV (375 nm), which are in good agreement with experimental values. The theory predicts that the 390 nm, 430 nm and 580 run absorption bands are related to the existence of V-Pb(2-) in the PbMoO4 crystal.
Resumo:
National Nature Science Foundation of China (Grant No. 60607015)
Resumo:
Nanocrystalline silicon (nc-Si) embedded SiO2 matrix has been formed by annealing the SiOx films fabricated by plasma-enhanced chemical vapor deposition (PECVD) technique. Absorption coefficient and photoluminescence of the films have been measured at room temperature. The experimental results show that there is an "aUrbach-like" b exponential absorption in the spectral range of 2.0-3.0 eV. The relationship of (alpha hv)(1/2) proportional to(hv - E-g) demonstrates that the luminescent nc-Si have an indirect band structure. The existence of Stokes shift between photoluminescence and absorption edge indicates that radiative combination can take place not only between electron states and hole states but also between shallow trap states of electrons and holes. (C) 2000 Elsevier Science B.V. All rights reserved.
Resumo:
We have observed an extremely narrow absorption spectrum due to bound-to-continuum transition in GaAs/AlxGa1-xAs multiple quantum wells (MQWs). Its linewidth is only about one tenth of the values reported previously. Our calculation indicates that the broadening of the excited state in the continuum has little contribution to the absorption linewidth. We have grown a sample whose MQW region contains two kinds of wells with a minor thickness inhomogeneity. Its resultant absorption linewidth is six times as large as that of homogeneous well sample, which is in good agreement with our theoretical analysis. Thus we can suggest that the wider absorption spectra reported by many authors may be due to the well width inhomogeneity. (C) 1998 American Institute of Physics. [S0003-6951(98)03430-5]
Resumo:
Samples have been prepared at different temperatures by loading It molecules into the cages of zeolite 5A, and the measurements of the absorption spectra have been carried out for the prepared samples. It is shown that 12 molecular clusters are formed in the cages of zeolite 5A, and it is also found that molecular clusters which are bonded with intermolecular forces have an important feature, namely, the intermolecular distance in molecular clusters can be changed on different preparing conditions and the blue shift of absorption edges can not be as the criterion of forming molecular clusters.
Resumo:
Samples with different weight ratio of Se to zeolite 5A (Se concentration) have been prepared by loading Se into the pores of zeolite 5A, and the measuerments of the absorption and Raman spectra have been carried out for the prepared samples. The measured absorption edges of the samples are close to the value for monoclinic Se containing Se-8-ring, suggesting the formation of Se-8-ring clusters(1) in the pores. The continuous and broadening features of the absorption spectra are interpreted by the strong electron-nucleus coupling in the Se-8-ring cluster. The absorption edges are red shifted with the increase of the Se concentration. It is tentatively attributed to two reasons. One is the existence of the double Se-8-ring cluster in the high Se concentration samples, and the other is that for the strong electron-nucleus coupling cluster, the absorption edge of the clusters system will be red shifted with the increase of the cluster concentration in the clusters system. A single broad band at about 262 cm(-1) is observed in the Raman spectra, which further supports the formation of Se-8-ring clusters. (C) 1997 Published by Elsevier Science S.A.
Resumo:
In the frame of time-dependent density functional theory, the: dynamical polarizabilities of Na-5, Na-6 and Na-7 clusters are calculated using a time-dependent local density approximation. By using Fourier transformation, the optical absorption spectra of Na-5, Na-6 and Na-7 clusters are obtained from their dynamical polarizabilities. It is shown that experimentally measured optical absorption spectra of Na-5, Na-6 and Na-7 clusters are reproduced in our calculations. Furthermore, the calculations of Na-6 and Na-7 clusters are in good agreement with the results of configuration interaction method. Compared with the three-dimensional structure of Na-6, the calculated optical absorption spectra of Na-6 with the two-dimensional structure are more close to the experimental data.
Resumo:
采用提拉法成功生长了纯LaAlO3和掺铈的LaAlO3单晶体,测试了它们的远红外吸收谱,紫外吸收谱,荧光谱,根据吸收光谱确定了晶体中Ce^3+的能级结构,利用这一能级结构模型较好地解释了Ce:LaAlO3晶体的荧光光谱。
Resumo:
Highly uniform and well-dispersed CeO2 and CeO2:Eu3+ (Sm3+, Tb3+) nanocrystals were prepared by a nonhydrolytic solution route and characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectra (XPS), UV/vis absorption, and photoluminescence (PL) spectra, respectively. The result of XRD indicates that the CeO2 nanocrystals are well crystallized with a cubic structure. The TEM images illustrate that the average size of CeO2 nanocrystals is about 3.5 nm in diameter. The absorption spectrum of CeO2:Eu3+ nanocrystals exhibits red-shifting with respect to that of the undoped CeO2 nanocrystals. Under the excitation of 440 nm (or 426 nm) light, the colloidal solution of the undoped CeO2 nanocrystals shows a very weak emission band with a maximum at 501 nm, which is remarkably enhanced by doping additional lanthanide ions (Eu3+, Tb3+, Sm3+) in the CeO2 nanocrystals. The emission band is not due to the characteristic emission of the lanthanide ions but might arise from the oxygen vacancy which is introduced in the fluorite lattice of the CeO2 nanocrystals to compensate the effective negative charge associated with the trivalent ions.
Resumo:
Samples with different weight ratio of Se to zeolite 5A (Se composition) have been prepared by loading Se into the cages of zeolite 5A and the measurements of the absorption and Raman spectra have been carried out for the prepared samples. The measured absorption edges of the samples close and blue shifted to the value for monoclinic Se containing Se-8-ring, suggesting the formation of Se-8-ring clusters dagger in the cages. The continuous and broadening features of the absorption spectra are interpreted by the strong electron-phonon coupling in Se-8-ring clusters. The sample with high Se composition has a red shift of the absorption band edge relative to the samples with less Se composition. It is tentatively attributed to the reason that with different Se composition, single Se-8-ring clusters and double Se-8-ring clusters are formed in the cages of zeolite 5A. A single broad band at about 262 cm(-1) is observed in the Raman spectra, that gives the further support of the formation of Se-8-ring clusters. Copyright (C) 1996 Elsevier Science Ltd
Resumo:
Vacuum ultraviolet excitation spectra of phosphors (La,Gd)PO4:RE3+ (RE = Eu or Tb) and X-ray photoelectron spectra of LaPO4 and GdPO4 are investigated. The vacuum ultraviolet excitation intensity of (La,Gd)PO4:RE3+ is enhanced with the increasing of Gd3+ content, which implies that Gd3+ plays an intermediate role in energy transfer from host absorption band to RE3+. When Gd3+ is doped into LaPO4:Eu, charge transfer band (CT band) begins to shift to higher energy region and the overlap degree of CT band and the host absorption band gets greater with more Gd3+ doped into LaPO4. These results suggest that the dopant (Gd3+) gives an important influence on energy transfer efficiency. The top of LaPO4 valance band is formed by the 2p level of O2-, whereas that of GdPO4 valance band is formed by the 2p level of O2- and the 4f level of Gd3+, showing the differences in band structures between LaPO4 and GdPO4.