67 resultados para Topologies on an arbitrary set


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, a generalized JKR model is investigated, in which an elastic cylinder adhesively contacts with an elastic half space and the contact region is assumed to be perfect bonding. An external pulling force is acted on the cylinder in an arbitrary direction. The contact area changes during the pull-off process, which can be predicted using the dynamic Griffith energy balance criterion as the contact edge shifts. Full coupled solution with an oscillatory singularity is obtained and analyzed by numerical calculations. The effect of Dundurs' parameter on the pull-off process is analyzed, which shows that a nonoscillatory solution can approximate the general one under some conditions, i.e., larger pulling angle (pi/2 is the maximum value), smaller a/R or larger nondimensional parameter value of Delta gamma/E*R. Relations among the contact half width, the external pulling force and the pulling angle are used to determine the pull-off force and pull-off contact half width explicitly. All the results in the present paper as basic solutions are helpful and applicable for experimenters and engineers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, an unstructured Chimera mesh method is used to compute incompressible flow around a rotating body. To implement the pressure correction algorithm on unstructured overlapping sub-grids, a novel interpolation scheme for pressure correction is proposed. This indirect interpolation scheme can ensure a tight coupling of pressure between sub-domains. A moving-mesh finite volume approach is used to treat the rotating sub-domain and the governing equations are formulated in an inertial reference frame. Since the mesh that surrounds the rotating body undergoes only solid body rotation and the background mesh remains stationary, no mesh deformation is encountered in the computation. As a benefit from the utilization of an inertial frame, tensorial transformation for velocity is not needed. Three numerical simulations are successfully performed. They include flow over a fixed circular cylinder, flow over a rotating circular cylinder and flow over a rotating elliptic cylinder. These numerical examples demonstrate the capability of the current scheme in handling moving boundaries. The numerical results are in good agreement with experimental and computational data in literature. (C) 2007 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Based on the analysis of molecular gas dynamics, the drag and moment acting on an ellipsoid particle of revolution X-2/a(2) + Y-2/a(2) + Z(2)/c(2) = 1, as an example of nonspherical particles, are studied under the condition of free-molecular plasma flow with thin plasma sheaths. A nonzero moment which causes nonspherical particle self-oscillation and self-rotation around its own axis in the plasma flow-similar to the pitching moment in aerodynamics-is discovered for the first time. When the ratio of axis length c/a is unity, the moment is zero and the drag formula are reduced to the well-known results of spherical particles. The effects of the particle-plasma relative velocity, the plasma temperature, and the particle materials on the drag and moment are also investigated.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Experiments concerning slightly slanting impact between a flat-ended rigid body and a flat-ended elastic cantilever column with a rectangular cross-section have been performed. The experimental results are compared with the theoretical ones. The small angle of incidence was measured by using an optical method. The impact process was studied by using a split disc for the rigid body, with the two halves bonded together and electrically insulated from each other. The disc and the column were parts of an electric circuit. Different contact states could be distinguished according to different voltage levels. Reasonably good agreement between theory and experiment was found. Thus, the impact duration has its minimum under perfectly axial impact as predicted by the theory. Also, the predicted process of alternating line and surface contact was observed. Furthermore, the existence of a small critical angle of incidence was verified. This critical angle of incidence divides the impact processes into two categories: (1) The rigid body and the column end come into surface contact before separation. (2) They separate without surface contact. Comparison of axial strains between theory and experiment shows good agreement.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The fluid force coefficients on a transversely oscillating cylinder are calculated by applying two- dimensional large eddy simulation method. Considering the ‘‘jump’’ phenomenon of the amplitude of lift coefficient is harmful to the security of the submarine slender structures, the characteristics of this ‘‘jump’’ are dissertated concretely. By comparing with experiment results, we establish a numerical model for predicting the jump of lift force on an oscillating cylinder, providing consultation for revising the hydrodynamic parameters and checking the fatigue life scale design of submarine slender cylindrical structures.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We investigate the propagation of an arbitrary elliptically polarized few-cycle ultrashort laser pulse in resonant two-level quantum systems using an iterative predictor-corrector finite-difference time-domain method. It is shown that when the initial effective area is equal to 2 pi, the effective area will remain invariant during the course of propagation, and a complete Rabi oscillation can be achieved. However, for an elliptically polarized few-cycle ultrashort laser pulse, polarization conversion can occur. Eventually, the laser pulse will evolve into two separate circularly polarized laser pulses with opposite helicities.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report an experiment of trapping of neutral Rb-87 atoms on a, self-made atomchip. The H-shaped atomchip is made by magnetron sputtering technology, which is different from the atomchip technology of other teams. We collect 3 x 10(6) Rb-87 atoms in the mirror magneto-optical trap (MOT) using the external MOT coils, and 1 X 10(5) Rb-87 atoms are transferred to U-MOT using U-shaped wire in chip and a pair of bias coils.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the sinusoidal phase modulating interferometer technique, the high-speed CCD is necessary to detect the interference signals. The reason of ordinary CCD's low frame rate was analyzed, and a novel high-speed image sensing technique with adjustable frame rate based on ail ordinary CCD was proposed. And the principle of the image sensor was analyzed. When the maximum frequency and channel bandwidth were constant, a custom high-speed sensor was designed by using the ordinary CCD under the control of the special driving circuit. The frame rate of the ordinary CCD has been enhanced by controlling the number of pixels of every frame; therefore, the ordinary of CCD can be used as the high frame rate image sensor with small amount of pixels. The multi-output high-speed image sensor has the deficiencies of low accuracy, and high cost, while the high-speed image senor with small number of pixels by using this technique can overcome theses faults. The light intensity varying with time was measured by using the image sensor. The frame rate was LIP to 1600 frame per second (f/s), and the size of every frame and the frame rate were adjustable. The correlation coefficient between the measurement result and the standard values were higher than 0.98026, and the relative error was lower than 0.53%. The experimental results show that this sensor is fit to the measurements of sinusoidal phase modulating interferometer technique. (c) 2007 Elsevier GmbH. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A relatively simple transform from an arbitrary solution of the paraxial wave equation to the corresponding exact solution of the Helmholtz wave equation is derived in the condition that the evanescent waves are ignored and is used to study the corrections to the paraxial approximation of an arbitrary free-propagation beam. Specifically, the general lowest-order correction field is given in a very simple form and is proved to be exactly consistent with the perturbation method developed by Lax et nl. [Phys. Rev. A 11, 1365 (1975)]. Some special examples, such as the lowest-order correction to the paraxial approximation of a fundamental Gaussian beam whose waist plane has a parallel shin from the z = 0 plane, are presented. (C) 1998 Optical Society of America.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Silver carp (Hypophthalmichthys molitrix) and bighead carp (Aristichthys nobilis) were used as a new pen-cultureed biomanipulation technique to control algal blooms in Meiliang Bay of Lake Taihu. In order to evaluate the capacity of these two fishes to decrease algal blooms, diel feeding samplings were carried out in May (without algal blooms) and September (with algal blooms) in 2005. Based on estimated food consumption by the Elliott-Persson model, silver carp increased daily food consumption from 2.07 g dry weight per 100 g wet body weight in May before the outbreak of algal blooms to 4.98 g dry weight per 100 g wet body weight in September during algal blooms outbreak. However, no obvious variation of food consumption was observed in bighead carp during the study period. This species 1.88 and 1.54 g dry weight of plankton per 100 g wet body weight in May and September, respectively. Silver carp had a higher feeding capacity for plankton than bighead carp. Biotic factors (i.e., fish size and conspecific competition with natural species in the lake) may affect the feeding behaviors of both carps as well as seasonal variation of plankton communities in the pen.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We propose a spin current diode which can work even in a small applied bias condition (the linear-response regime). The prototypal device consists of a hornlike electron waveguide with Rashba spin-orbit interaction, which is connected to two leads with different widths. It is demonstrated that when electrons are incident from the narrow lead, the generated spin conductance fluctuates around a constant value in a wide range of incident energy. When the transport direction is reversed, the spin conductance is suppressed strongly. Such a remarkable difference arises from spin-flipped transitions caused by the spin-orbit interaction. (c) 2008 American Institute of Physics.