29 resultados para Tetradecanoylphorbol Acetate -- pharmacology
Resumo:
Rhus chinensis, a species used in folk medicine by Chinese native people, the anti-HIV-1 activities of the petroleum ether, ethyl acetate, butanol and aqueous extract of Rhus chinensis, named as RC-1, RC-2, RC-3 and RC-4, respectively, was evaluated. The
Resumo:
A novel microstructured polymer optical fiber (MPOF) probe for nitrites (NO(2)(-)) detection was made by forming rhodamine 6G (Rh 6G)-doped cellulose acetate (CA) on the side wall of array holes in a MPOF It was found that the MPOF probe only have a response to nitrites in a certain concentration of sulfuric acid solution The calibration graph of fluorescence intensity versus nitrites concentration was linear in the range of 2.0 x 10(-4) g/ml-5.0 x 10(-3) g/ml. The method possesses case of chemical modification, low cost design, and potential for direct integration with existing instrumentation, and has been applied to the determination of nitrites in real samples with satisfactory results. (C) 2010 Elsevier B.V. All rights reserved
Resumo:
A modified microfiltration membrane has been prepared by blending a matrix polymer with a functional polymer. Cellulose acetate (CA) was blended with polyethyleneimine (PEI), which was then crosslinked by polyisocyanate, in a mixture of solvents. In the membrane, PEI can supply coupling sites for ligands in affinity separation or be used as ligands for metal chelating, removal of endotoxin or ion exchange. The effects of the time of phase inversion induced by water vapor, blended amount of PEI and amount of crosslinking agent on membrane performance were investigated. The prepared blend membranes have specific surface area of 12.04-24.11 m(2)/g and pure water flux (PWF) of 10-50 ml/cm(2) min with porosity of 63-75%. The membranes, made of 0.15 50 wt.% PEI/CA ratio and 0.5 crosslinking agent/PEI ratio, were applied to adsorbing Cu2+ and bovine serum albumin (BSA) individually. The maximum adsorption capacity of Cu2+ ion on the blend membrane is 7.42 mg/g dry membrane. The maximum adsorption capacities of BSA on the membranes with and without chelating Cu2+ ion are 86.6 and 43.8 mg/g dry membrane, respectively. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
The crystal structure of the title compound, C12H10ClF3O3, was determined in order to establish the configuration of the C double bond. The compound was found to be the Z isomer. The crystal structure is dominated by Cl center dot center dot center dot O halogen bonds [Cl center dot center dot center dot O = 3.111 (3) angstrom], as well as C-H center dot center dot center dot O and C-H center dot center dot center dot F hydrogen-bonding interactions, that connect neighboring molecules into a three-dimensional supramolecular network.
Resumo:
The separation of ethyl acetate and ethanol (EtOH) is important but difficult due to their close boiling points and formation of an azeotropic mixture. The separation of the azeotropic mixture of ethyl acetate and EtOH using the hydrophilic ionic liquids (ILs) 1-alkyl-3-methylimidazolium chloride (alkyl = butyl, hexyl, and octyl) ([C(n)mim]Cl, n = 4, 6, 8) and 1-allyl-3-methylimidazolium chloride and bromide ([Amim]Cl and [Amim]Br) has been investigated. Triangle phase diagrams of five ILs with ethyl acetate and EtOH were constructed, and the biphasic regions were found as follows: [Amim]Cl > [Amim]Br > [C(4)mim]Cl > [C(6)mim]Cl > [C(8)mim]Cl. The mechanisms of the ILs including cation, anion, and polarity effect were discussed.
Resumo:
Although polyaniline (PANI) has high conductivity and relatively good environmental and thermal stability and is easily synthesized, the intractability of this intrinsically conducting polymer with a melting procedure prevents extensive applications. This work was designed to process PANI with a melting blend method with current thermoplastic polymers. PANI in an emeraldine base form was plasticized and doped with dodecylbenzene sulfonic acid (DBSA) to prepare a conductive complex (PANI-DBSA). PANI-DBSA, low-density polyethylene (LDPE), and an ethylene/vinyl acetate copolymer (EVA) were blended in a twin-rotor mixer. The blending procedure was monitored, including the changes in the temperature, torque moment, and work. As expected, the conductivity of ternary PANI-DBSA/LDPE/EVA was higher by one order of magnitude than that of binary PANI-DBSA/LDPE, and this was attributed to the PANI-DBSA phase being preferentially located in the EVA phase. An investigation of the morphology of the polymer blends with high-resolution optical microscopy indicated that PANI-DBSA formed a conducting network at a high concentration of PANI-DBSA. The thermal and crystalline properties of the polymer blends were measured with differential scanning calorimetry. The mechanical properties were also measured.
Resumo:
Nonisothermal crystallization and melting behavior of poly(P-hydroxybutyrate) (PHB)-poly(vinyl acetate) (PVAc) blends from the melt were investigated by differential scanning calorimetry using various cooling rates. The results show that crystallization of PHB from the melt in the PHB-PVAc blends depends greatly upon cooling rates and blend compositions. For a given composition, the crystallization process begins at higher temperatures when slower scanning rates are used. At a given cooling rate, the presence of PVAc reduces the overall PHB crystallization rate. The Avrami analysis modified by Jeziorny and a new method were used to describe the nonisothermal crystallization process of PHB-PVAc blends very well. The double-melting phenomenon is found to be caused by crystallization during heating in DSC. (C) 1999 John Wiley & Sons, Inc.
Resumo:
The overall isothermal crystallization kinetics and melting behavior of poly(beta-hydroxybutyrate) (PHB)/poly(vinyl acetate) (PVAc) blends were studied by using differential scanning calorimetry(DSC). The Avrami analysis indicates that the addition of PVAc into PHB results in the decrease in the overall crystallization rate of the PHB phase, but does not affect PHB's nucleation mechanism and geometry of crystal growth. The activation energy of the overall process of crystallization increases with the increasing PVAc content in the blends. The phenomenon of multiple melting endotherms is observed, which is caused by melting and recrystallization during the DSC heating run. (C) 1998 Elsevier Science Ltd. All rights reserved.
Resumo:
Poly(vinyl acetate-co-vinyl alcohol) copolymers (P(VAc-co-VA)) were synthesized by hydrolysis-alcoholysis of PVAc. The miscibility, crystallization, and morphology of poly(P-hydroxybutyrate) (PHB) and P(VAc-co-VA) blends were studied by differential scanning calorimetry, optical microscopy (OM), and SAXS. It is found that the P(VAc-co-VA)s with vinyl alcohol content of 9, 15, and 22 mol % will form a miscible phase with the amorphous part of PHB in the solution-cast samples. The melting-quenched samples of PHB/P(VAc-co-VA) blends with different vinyl alcohol content show different phase behavior. PHB and P(VAc-co-VA9) with low vinyl alcohol content (9% mel) will form a miscible blend in the melt state. PHB and P(VAc-co-VA15) with 15 mol % vinyl alcohol will not form miscible blends while PHB/P(VAc-co-VA15) blend with 20/80 composition will form a partially miscible blend in the melt state. PHB and P(VAc-co-VA22) with 22 mol % vinyl alcohol are not miscible in the whole composition range. The single glass transition temperature of the blends within the whole composition range suggests that PHB and P(VAc-co-VA9) are totally miscible in the melt. The crystallization kinetics was studied from the whole crystallization and spherulite growth for the miscible blends. The equilibrium melting point of PHB in the PHB/P(VAc-co-VA9) blends, which was obtained from DSC results using the Hoffman-Weeks equation, decreases with the increase in P(VAc-co-VA9) content. The negative value of the interaction parameter determined from the equilibrium melting point depression supports the miscibility between the components. The kinetics of spherulitic crystallization of PHB in the blends was analyzed according to nucleation theory in the temperature range studied in this work. The best fit of the data to the kinetic theory is obtained by employing WLF parameters and the equilibrium melting points obtained by DSC. The addition of P(VAc-co-VA) did not affect the crystalline structure of PHB, as shown by the WAXD results. The long periods of blends obtained from SAXS increase with the increase in P(VAc-co-VA) content. It indicates that the amorphous P(VAc-co-VA) was rejected to interlamellar phase corporating with the amorphous part of PHB.
Resumo:
Flory solution theory modified by Hamada et al. (Macromolecules, 1980, 13, 729) was used to predict the miscibility of blends of poly(ethylene oxide) with poly(methyl methacrylate) (PEO-aPMMA) and with poly(vinyl acetate) (PEO-PVAc). Interaction parameters of a PEO-aPMMA blend with the weight ratio of PEO/aPMMA = 50/50 at the temperature range of 393-433 K and PEO-PVAc blends with different compositions and temperatures were calculated from the determined equation-of-state parameters based on Flory solution theory modified by Hamada ed al. Results show that interaction parameters of the PEO-aPMMA blend are negative and can be comparable with values obtained from neutron-scattering measurements by Ito et al. (Macromolecules, 1987, 20, 2213). Also, interaction parameters and excess volumes of PEO-PVAc blends are negative and increase with enhancing the content of PEO and the temperature. (C) 1998 Elsevier Science Ltd. All rights reserved.
Resumo:
Ion-molecule reactions of four isomeric cyclopropane derivatives were investigated under chemical ionization(CI) conditions, using methane, acetone and vinyl acetate as reagent gases, The methane positive-ion CI mass spectra of each of two isomer pairs 1,2 and 3,4 are identical, and so are the collision-induced dissociation (CTD) spectra of the protonated molecules of each of the two isomer pairs, The protonation reactions for the isomer pairs 1,2 and 3,4 occurred on the sites of the carboxyl groups and the R groups, respectively, Differences between isomers 1 and 2 are observed in their acetone (A) positive-ion CI mass spectra and in the CID spectra of their adduct ions ([M+H+A](+)), The adduct ions of compounds 2, 3 and 4 with protonated acetone and with protonated acetone dimer are observed in their CI mass spectra, However, only the adduct ions of compound 1 with protonated acetone appear in its CI mass spectrum, The protonated dimers of each of the four compounds are found in their vinyl acetate positive-ion CI mass spectra, and the CID spectra of these dimers for isomers 1 and 2 can also reflect their stereostructural difference. (C) 1998 John Wiley & Sons, Ltd.