98 resultados para Test specimens
Resumo:
The present work investigates the effects of cyclic fatigue loading on the residual properties of an injection-molded composite, carbon-fiber-reinforced poly(phenylene ether ketone) (CF/PEK-C), and damage development in this material under fatigue lending. Test specimens, which had been conditioned to various preselected fatigue damage stages, were measured for their residual properties. The results indicated that cyclic fatigue loading alters the constitutive behavior of the injection-molded composite, especially in the non-linear portion of the stress/strain curve. The residual strength decreases with increase in the number of fatigue cycles as a consequence of the accumulation of fatigue damage, which is dominated by the growth of microcracks. While the residual modulus increases slightly with cyclic fatigue loading, this is probably due to the oriented hardening resulting from creep deformation which is induced during cyclic loading. (C) 1997 Elsevier Science Limited.
Resumo:
This experimental study examines the role of formulated molecular weight between crosslink sites on the temperature resistance and mechanical properties of composites based on a polyimide containing a diphenyl thioether unit (PTI). The composites are fabricated by in situ polymerization of monomer reactants (PMR) using three monomeric ingredients: bis(3,4-dicarboxyphenyl) sulfide dianhydride (TDPA); 4,4'-methylene dianiline (MDA); and the monomethyl ester of norbornene anhydride (NE). By changing monomeric molar ratio, three formulations are prepared, in which formulated molecular weight between crosslink sites varies from 1487 to 3446 g mol(-1). Unidirectional composite laminates from each formulation and T300 carbon fibres are compression moulded and cut into a series of test specimens. By measuring the glass transition temperature (T-g), Mode I interlaminar fracture toughness (G(IC)) and other mechanical properties at room and elevated temperatures, the influences of formulated molecular weight on the temperature resistance and mechanical properties of PTI-based composites are investigated.
Resumo:
Rate of hydrogen permeation was measured under static as well as dynamic mechanical deformation conditions, Cylindrical tensile test specimens were used for the study and hydrogen permeation was measured electrochemically, It was observed that the hydrogen diffusivity decreased as plastic deformation increased for the static deformation experiments while elastic deformation had no significant effect on diffusivity but increased the steady state permeation flux, For the dynamic loading experiment, an elastic deformation increased the hydrogen permeation rate almost linearly. Onset of plastic deformation led a sudden decrease of permeation rate and the reduced rate was rapidly recovered when the plastic deformation ceased. These rapid changes in the permeation rates were explained that the absorbed hydrogen was trapped by dislocations and creation rate and density of dislocations changed drastically when plastic deformation started and stopped.
Resumo:
The LY12-cz aluminium alloy sheet specimens with a central hole were tested under constant amplitude loading, Rayleigh narrow band random loading and a typical fighter broad band random loading. The fatigue life was estimated by means of the nominal stress and the Miner's rule. The stress cycles were distinguished by the rainflow count, range count and peak value count, respectively. The comparison between the estimated results and the test results was made. The effects of random loading sequence and small load cycles on fatigue life were also studied.
Resumo:
This paper reports the mechanical properties and fracture behavior of silicon carbide (3C-SiC) thin films grown on silicon substrates. Using bulge testing combined with a refined load-deflection model of long rectangular membranes, which takes into account the bending stiffness and prestress of the membrane material, the Young's modulus, prestress, and fracture strength for the 3C-SiC thin films with thicknesses of 0.40 and 1.42 mu m were extracted. The stress distribution in the membranes under a load was calculated analytically. The prestresses for the two films were 322 +/- 47 and 201 +/- 34 MPa, respectively. The thinner 3C-SiC film with a strong (111) orientation has a plane-gstrain moduli of 415 +/- 61 GPa, whereas the thicker film with a mixture of both (111) and (110) orientations exhibited a plane-strain moduli of 329 +/- 49 GPa. The corresponding fracture strengths for the two kinds of SiC films were 6.49 +/- 0.88 and 3.16 +/- 0.38 GPa, respectively. The reference stresses were computed by integrating the local stress of the membrane at the fracture over edge, surface, and volume of the specimens and were fitted with Weibull distribution function. For the 0.40-mu m-thick membranes, the surface integration has a better agreement between the data and the model, implying that the surface flaws are the dominant fracture origin. For the 1.42-mu m-thick membranes, the surface integration presented only a slightly better fitting quality than the other two, and therefore, it is difficult to rule out unambiguously the effects of the volume and edge flaws.
Resumo:
In the present paper the rarefied gas how caused by the sudden change of the wall temperature and the Rayleigh problem are simulated by the DSMC method which has been validated by experiments both in global flour field and velocity distribution function level. The comparison of the simulated results with the accurate numerical solutions of the B-G-K model equation shows that near equilibrium the BG-K equation with corrected collision frequency can give accurate result but as farther away from equilibrium the B-G-K equation is not accurate. This is for the first time that the error caused by the B-G-K model equation has been revealed.
Resumo:
Micro-indentation test at scales on the order of sub-micron has shown that the measured hardness increases strongly with decreasing indent depth or indent size, which is frequently referred to as the size effect. Simultaneously, at micron or sub-micron scale, the material microstructure size also has an important influence on the measured hardness. This kind of effect, such as the crystal grain size effect, thin film thickness effect, etc., is called the geometrical effect by here. In the present research, in order to investigate the size effect and the geometrical effect, the micro-indentation experiments are carried out respectively for single crystal copper and aluminum, for polycrystal aluminum, as well as for a thin film/substrate system, Ti/Si3N4. The size effect and geometrical effect are displayed experimentally. Moreover, using strain gradient plasticity theory, the size effect and the geometrical effect are simulated. Through comparing experimental results with simulation results, length-scale parameter appearing in the strain gradient theory for different cases is predicted. Furthermore, the size effect and the geometrical effect are interpreted using the geometrically necessary dislocation concept and the discrete dislocation theory. Member Price: $0; Non-Member Price: $25.00
Resumo:
Based on the theory of the pumping well test, the transient injection well test was suggested in this paper. The design method and the scope of application are discussed in detail. The mathematical models are developed for the short-time and long-time transient injection test respectively. A double logarithm type curve matching method was introduced for analyzing the field transient injection test data. A set of methods for the transient injection test design, experiment performance and data analysis were established. Some field tests were analyzed, and the results show that the test model and method are suitable for the transient injection test and can be used to deal with the real engineering problems.
Resumo:
In the present research, microstructures of the surface-nanocrystalline Al alloy material are observed and measured based on the transmission electron microscopy (TEM) technique, and the corresponding mechanical behaviors are investigated experimentally and theoretically. In the experimental research, the nanoindentation test method is used, and the load and microhardness curves are measured, which strongly depend on the grain size and grain size nonuniformity. Two kinds of the nanoindentation test methods are adopted: the randomly selected loading point method and the continuous stiffness method. In the theoretical modeling, based on the microstructure characteristics of the surface-nanocrystalline Al alloy material, a dislocation pile-up model considering the grain size effect and based on the Mott theory is presented and used. The hardness-indent depth curves are predicted and modeled.
Assessment of Microscale Test Methods of Peeling and Splitting along Surface of Thin-Film/Substrates
Resumo:
Peel test methods are assessed through being applied to a peeling analysis of the ductile film/ceramic substrate system. Through computing the fracture work of the system using the either beam bend model (BB model) or the general plane analysis model (GPA model), surprisingly, a big difference between both model results is found. Although the BB model can capture the plastic dissipation phenomenon for the ductile film case as the GPA model can, it is much sensitive to the choice of the peeling criterion parameters, and it overestimates the plastic bending effect unable to capture crack tip constraint plasticity. In view of the difficulty of measuring interfacial toughness using peel test method when film is the ductile material, a new test method, split test, is recommended and analyzed using the GPA model. The prediction is applied to a wedge-loaded experiment for Al-alloy double-cantilever beam in literature.
Resumo:
The tensile deformation and failure of polymer bonded explosives (PBXs), a particulate composite, is studied in this paper. Two HMX-based PBXs with different binder were selected for study. A diametric compression test, in which a disc-shaped specimen is loaded diametrically, was chosen to generate tensile failure in the materials. The quasi-static tensile properties and the tensile creep properties were studied by using conventional displacement transducers to measure the lateral strain along the horizontal diameter. The whole-field in-plane creep deformation was measured by using the technique of high resolution moire´ interferometry. Real time microscopic examination was conducted to monitor the process of deformation and failure of PBXs by using a scanning electron microscope equipped with a loading stage. A manifold method (MM) was used to simulate the deformation and failure of PBX samples under the diametric compression test, including the crack initiation, crack propagation and final cleavage fracture. The mechanisms of deformation and failure of PBXs under diametric compression were analyzed. The diametric compression test and the techniques developed in this research have proven to be applicable to the study of tensile properties of PBXs.
Resumo:
Micro-indentation tests at scales of the order of sub-micron show that the measured hardness increases strongly with decreasing indent depth or indent size, which is frequently referred to as the size effect. At the same time, at micron or sub-micron scale, another effect, which is referred to as the geometrical size effects such as crystal grain size effect, thin film thickness effect, etc., also influences the measured material hardness. However, the trends are at odds with the size-independence implied by the conventional elastic-plastic theory. In the present research, the strain gradient plasticity theory (Fleck and Hutchinson) is used to model the composition effects (size effect and geometrical effect) for polycrystal material and metal thin film/ceramic substrate systems when materials undergo micro-indenting. The phenomena of the "pile-up" and "sink-in" appeared in the indentation test for the polycrystal materials are also discussed. Meanwhile, the micro-indentation experiments for the polycrystal Al and for the Ti/Si_3N_4 thin film/substrate system are carried out. By comparing the theoretical predictions with experimental measurements, the values and the variation trends of the micro-scale parameter included in the strain gradient plasticity theory are predicted.
Resumo:
Thermal failure of SiC particulate-reinforced 6061 aluminum alloy composites induced by both laser thermal shock and mechanical load has been investigated. The specimens with a single-edge notch were mechanically polished to 0.25 mm in thickness. The notched-tip region of the specimen is subjected to laser beam rapid heating. In the test, a pulsed Nd:glass laser beam is used with duration 1.0 ms or 250 mu s, intensity 15 or 70 kW/cm(2), and spot size 5.0 mm in diameter. Threshold intensity was tested and fracture behavior was studied. The crack-tip process zone development and the microcrack formation were macroscopically and microscopically observed. It was found that in these materials, the initial crack occurred in the notched-tip region, wherein the initial crack was induced by either void nucleation, growth, and subsequent coalescence of the matrix materials or separation of the SiC particulate-matrix interface. It was further found that the process of the crack propagation occurred by the fracture of the SiC particulates.
Resumo:
Very-High-Cycle Fatigue (VHCF) is the phenomenon of fatigue damage and failure of metallic materials or structures subjected to 108 cycles of fatigue loading and beyond. This paper attempts to investigate the VHCF behavior and mechanism of a high strength low alloy steel (main composition: C-1% and Cr-1.5%; quenched at 1108K and tempered at 453K). The fractography of fatigue failure was observed by optical microscopy and scanning electron microscopy. The observations reveal that, for the number of cycles to fatigue failure between 106 and 4108 cycles, fatigue cracks almost initiated in the interior of specimen and originated at non-metallic inclusions. An “optical dark area” (ODA) around initiation site is observed when fatigue initiation from interior. ODA size increases with the decrease of fatigue stress, and becomes more roundness. Fracture mechanics analysis gives the stress intensity factor of ODA, which is nearly equivalent to the corresponding fatigue threshold of the test material. The results indicate that the fatigue life of specimens with crack origin at the interior of specimen is longer than that with crack origin at specimen surface. The experimental results and the fatigue mechanism were further analyzed in terms of fracture mechanics and fracture physics, suggesting that the primary propagation of fatigue crack within the fish-eye local region is the main characteristics of VHCF.