51 resultados para Taylor vortex
Resumo:
The steady bifurcation flows in a spherical gap (gap ratio sigma=0.18) with rotating inner and stationary outer spheres are simulated numerically for Re(c1)less than or equal to Re less than or equal to 1 500 by solving steady axisymmetric incompressible Navier-Stokes equations using a finite difference method. The simulation shows that there exist two steady stable flows with 1 or 2 vortices per hemisphere for 775 less than or equal to Re less than or equal to 1 220 and three steady stable flows with 0, 1, or 2 vortices for 1 220
Resumo:
The suppression method of vortex shedding from a circular cylinder has been studied experimentally in the Reynolds number range from 300 to 1600. The test is performed in a water channel. The model cylinder is 1 cm in diameter and 38 cm in length. A row of small rods of 0.18 cm in diameter and 1.5 cm in length are perpendicularly connected to the surface of the model cylinder and distributed along the meridian, The distance between the neighboring rods and the angle of attack of the rods can be changed so that the suppression effect on vortex shedding can be adjusted. The results show that vortex shedding can be suppressed effectively if the distance between the neighboring rods is smaller than 3 times and the cylinder diameter and the angle of attack is in the range of 30degreesless than or equal tobeta<90&DEG;.
Resumo:
对单向水流作用下近壁管道横向涡激振动进行了实验模拟,重点探讨了管道与壁面间隙比(e/D)对管道涡激振动幅值和涡激振动频率响应特性的影响规律.实验结果表明,管道与壁面间隙宽度对管道涡激振动特性有较明显影响.在较大间隙比(e/D>0.66)下,管道振幅随着Vr数的增大先快速增长到最大值,然后平缓下降;在振动初期(即Vr数较小时),管道振动频率变化基本符合Strouhal规律;在振动中后期(即Vr数较大时),管道振动频率变化不符合Strouhal规律,而在管道固有频率附近缓慢增长.在较小间隙比(e/D<0.30)下,管道振幅随Vr数的增大先平缓上升到最大值,随后较快速下降;在振动初期,管道振动频率变化不遵循Strouhal规律;在整个振动范围内,与较大间隙比情况相比,随着Vr数增加,管道振动频率增长幅度明显较大.
Resumo:
A new finite difference method for the discretization of the incompressible Navier-Stokes equations is presented. The scheme is constructed on a staggered-mesh grid system. The convection terms are discretized with a fifth-order-accurate upwind compact difference approximation, the viscous terms are discretized with a sixth-order symmetrical compact difference approximation, the continuity equation and the pressure gradient in the momentum equations are discretized with a fourth-order difference approximation on a cell-centered mesh. Time advancement uses a three-stage Runge-Kutta method. The Poisson equation for computing the pressure is solved with preconditioning. Accuracy analysis shows that the new method has high resolving efficiency. Validation of the method by computation of Taylor's vortex array is presented.
Resumo:
In this paper, we apply our compressible lattice Boltzmann model to a rotating parabolic coordinate system to simulate Rossby vortices emerging in a layer of shallow water flowing zonally in a rotating paraboloidal vessel. By introducing a scaling factor, nonuniform curvilinear mesh can be mapped to a flat uniform mesh and then normal lattice Boltzmann method works. Since the mass per unit area on the two-dimensional (2D) surface varies with the thickness of the water layer, the 2D flow seems to be "compressible" and our compressible model is applied. Simulation solutions meet with the experimental observations qualitatively. Based on this research, quantitative solutions and many natural phenomena simulations in planetary atmospheres, oceans, and magnetized plasma, such as the famous Jovian Giant Red Spot, the Galactic Spiral-vortex, the Gulf Stream, and the Kuroshio Current, etc,, can be expected.
Resumo:
Numerical study of three-dimensional evolution of wake-type flow and vortex dislocations is performed by using a compact finite diffenence-Fourier spectral method to solve 3-D incompressible Navier-Stokes equations. A local spanwise nonuniformity in momentum defect is imposed on the incoming wake-type flow. The present numerical results have shown that the flow instability leads to three-dimensional vortex streets, whose frequency, phase as well as the strength vary with the span caused by the local nonuniformity. The vortex dislocations are generated in the nonuniform region and the large-scale chain-like vortex linkage structures in the dislocations are shown. The generation and the characteristics of the vortex dislocations are described in detail.
Resumo:
The 3-dimensiqnal incompressible Rayleigh-Taylor instability is numerically studied through the large-eddy-simulation (LES) approach based on the passive scalar transport model. Both the instantaneous velocity and the passive scalar fields excited by sinu
Resumo:
This paper describes the generation of pulsed, high-speed liquid jets using the cumulation method. This work mainly includes (1) the design of the nozzle assembly, (2) the measurement of the jet velocity and (3) flow visualization of the injection sequences. The cumulation method can be briefly described as the liquid being accelerated first by the impact of a moving projectile and then further after it enters a converging section. The experimental results show that the cumulation method is useful in obtaining a liquid jet with high velocity. The flow visualization shows the roles of the Rayleigh-Taylor and Kelvin-Helmholtz instabilities in the breakup of the liquid depend on the jet diameter and the downstream distance. When the liquid jet front is far downstream from the nozzle exit, the jet is decelerated by air drag. Meanwhile, large coherent vortex structures are formed surrounding the jet. The liquid will break up totally by the action of these vortices. Experimental results showing the effect of the liquid volume on the jet velocity are also included in this paper. Finally, a method for measuring the jet velocity by cutting two carbon rods is examined.
Resumo:
Turbulence and aeroacoustic noise high-order accurate schemes are required, and preferred, for solving complex flow fields with multi-scale structures. In this paper a super compact finite difference method (SCFDM) is presented, the accuracy is analysed and the method is compared with a sixth-order traditional and compact finite difference approximation. The comparison shows that the sixth-order accurate super compact method has higher resolving efficiency. The sixth-order super compact method, with a three-stage Runge-Kutta method for approximation of the compressible Navier-Stokes equations, is used to solve the complex flow structures induced by vortex-shock interactions. The basic nature of the near-field sound generated by interaction is studied.
Resumo:
Unlike most previous studies on vortex- induced vibrations of a cylinder far from a boundary, this paper focuses On the influences of close proximity of a submarine pipeline to a rigid seabed boundary upon the dynamic responses of the pipeline in ocean currents. The effects of gap-to-diameter ratio and those of the stability parameter on the amplitude and frequency responses of a pipeline are investigated experimentally with a novel hydro-elastic facility. A comparison is made between the present experimental results Of the amplitude and frequency responses for the pipes with seabed boundary effects and those for wall-free cylinders given by Govardhan and Williamson (2000) and Anand ( 1985). The comparison shows that the close proximity of a pipeline to seabed has much influence on the vortex- induced vibrations of the pipeline. Both the width of the lock-in ranges in terms of V, and the dimensionless amplitude ratio A(max)/D become larger with the decrease of the gap-to-diameter ratio e/D. Moreover, the vibration of the pipeline becomes easier to occur and its amplitude response becomes more intensive with the decrease of the stability parameter, while the pipeline frequency responses are affected slightly by the stability parameter.
Resumo:
Structure and dynamical processes of vortex dislocations in a kind of wake-type flow are described clearly by vortex lines, which are directly constructed from data of three-dimensional direct numerical simulations of the flow evolution.
Resumo:
The longitudinal structure function (LSF) and the transverse structure function (TSF) in isotropic turbulence are calculated using a vortex model. The vortex model is composed of the Rankine and Burgers vortices which have the exponential distributions in the vortex Reynolds number and vortex radii. This model exhibits a power law in the inertial range and satisfies the minimal condition of isotropy that the second-order exponent of the LSF in the inertial range is equal to that of the TSF. Also observed are differences between longitudinal and transverse structure functions caused by intermittency. These differences are related to their scaling differences which have been previously observed in experiments and numerical simulations.
Resumo:
给出了高Bond数下黏性液滴表面Rayleigh-Taylor线性不稳定性的分析解,这种不稳定性对于超音速气流作用下液滴破碎的早期阶段起着至关重要的作用.基于稳定性分析的结果,导出了用于估算稳定液滴的最大直径及液滴无量纲初始破碎时间的计算式,这些计算式与相关文献给出的实验和分析结果比较显示了良好的一致.
Resumo:
介绍通过实验对圆柱尾流旋涡脱落进行抑制的方法及其结果.实验模型的展径比为38,实验的雷诺数范围为3×102~1.6×103.抑制方法是在圆柱(直径为D)表面沿展向每隔一定间距伸出一直径0.18D、长度为1.5D的小棒.实验结果表明,当棒间距小于3D,棒与来流夹角在30°~90°范围内,可有效抑制旋涡脱落.