96 resultados para TM3
Resumo:
Fluorescence of Tm3+/Er3+ codoped bismuth-silica (BS) glasses and the sensitization of Ce3+ are investigated. It shows that Ce3+ codoping with Tm3+/Er3+ in BS glasses results in a quenching of Tm3+ ion emission from F-3(4) to the H-3(6) level. Consequently, the 1.47 mu m emission occurs after the population inversion between the H-3(4) and F-3(4) levels. Furthermore, the codoped glasses show the broad emission spectra over the whole S and C bands with full-width at half-maximum (FWHM) up to about 119nm, as it combines 1.55 mu m emission band of Er3+ with 1.47 mu m emission band of Tm3+ under 800nm excitation.
Resumo:
Up-conversion luminescence characteristics under 975 nm excitation have been investigated with Tb3+/Tm3+/Yb3+ triply doped tellurite glasses. Here, green (547 nm: D-5(4) --> F-7(4)) and red (660 nm: D-5(4) --> F-7(2)) up-conversion (UC) luminescence originating from Tb3+ is observed strongly, because of the quadratic dependences of emission intensities on the excitation power. Especially, the UC luminescence was intensified violently with the energy transfer from the Tm3+ ions involves in the Tb3+ excitation. To the Tb3+/Tm3+/Yb3+ triply doped glass system, a novel up-conversion mechanism is proposed as follows: the energy of (3)G(4) level (Tm3+) was transferred to D-5(4) (Tb3+) and the 477-nm UC luminescence of Tm3+ was nearly quenched. (C) 2006 Elsevier B.V. All rights reserved.
Resumo:
Intense Tm3+ blue upconversion emission has been observed in Tm3+-Yb3+ codoped oxyfluoride tellurite glass under excitation with a diode laser at 976 nm. Three emission bands centered at 475, 650 and 796 nm corresponding to the transitions (1)G(4) -> H-3(6), (1)G(4) -> H-3(4) and F-3(4) -> H-3(6), respectively, simultaneously occur. The dependence of upconversion intensities on Tm3+ ions concentration and excitation power are investigated. For fixed Yb2O3 concentrations of 5.0 mol%, the maximum upconversion intensity was obtained with Tm2O3 concentration of about 0.1 mol%. The blue upconversion luminescence lifetimes of the Tm3+ transitions (1)G(4) -> H-3(6) are measured. The results are evaluated by the possible upconversion mechanisms.
Mechanisms of Yb3+ sensitization to Tm3+ for blue upconversion luminescence in fluorophosphate glass
Resumo:
The sensitization mechanisms of Yb3+ to Tm3+ for the blue upconversion luminescence in fluorophosphate glass were studied. Two different mechanisms exist in the sensitization. One is the sequential sensitization that Tm3+ is excited from H-3(6) to (1)G(4) through absorbing three photons transferred from Yb3+ one by one. Another is the cooperative sensitization that two Yb3+ ions form a couple cluster firstly, and then the couple cluster Yb3+ ions transfer their energy to Tm3+ and excite it to (1)G(4). With the increment of the concentration of Yb3+ ions, the sequential sensitization becomes weak and the cooperative sensitization becomes intense, and the transformation trend of sensitization mechanism with the increment of Yb3+ concentration can be clarified by the introduction of Th3+ ions in the glass. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Er3+/Tm3+/Yb3+ tricloped oxyfluoride glass ceramics was synthesized in a general way. Under 980 nm LD pumping, intense red, green and blue upconversion was obtained. And with those primary colors, multicolor luminescence was observed in oxyfluoride glass ceramics with various dopant concentrations. The red and green upconversion is consistent with F-4(9/2) -> I-4(15/2) and H-2(11/2), S-4(3/2) -> I-4(15/2) transition of Er3+ respectively. While the blue upconversion originates from (1)G(4) -> H-3(6) transition of Tm3+. This is similar to that in Er3+/Yb3+ and/or Tm3+/Yb3+ codoped glass ceramics. However the upconversion of Tm3+ is enhanced by the energy transfer between Er3+ and Tm3+. (c) 2006 Published by Elsevier B.V.
Stability against crystallization and spectroscopic properties of Tm3+ doped fluorophosphate glasses
Resumo:
Fluorophosphate glasses with various content of Al(PO3)(3) were prepared. With the increment of Al(PO3)(3) content, density decreases while refractive index increases, and transition temperature, crystallization peak temperature and melt temperature increase which were suggested by differential scanning calorimetry. These glasses exhibit the best stability against crystallization with 7-9 mol'Yo Al(PO3)(3) content. Normalized Raman spectra were used to analyze structure and phonon state. The increment of Al(PO3)(3) content does not affect phonon energy but results in the augment of phonon density. Absorption spectra were measured. H-3(6) -> F-3(4) transition exhibits absorption at L band of the third communication window. Compared with the energy of Tm3+ excited states in other glass system, F-3(4) energy of Tm3+ in these glasses is considerable higher and H-3(4) energy is considerable lower, and it can be predicted that emission band of H-3(4) -> F-3(4) transition is close to the amplified band of gain-shift Tm3+ doped fiber amplifier. Analyses of Judd-Ofelt theory suggest when Al(PO3)(3) content is no more than 7 mol%, Judd-Ofelt parameters Omega(t) and the lifetime of H-3(4) energy level of TM3+ vary little with the increment of Al(PO3)(3) content, and when Al(PO3)(3) content is more than 7 mol%, Omega(2) and Omega(6) increase and radiative lifetime of H-3(4) energy level of Tm3+ drops sharply with the increment of Al(PO3)(3) content. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Er3+, Yb3+ and Tm3+ codoped fluorophosphate glasses emitting blue, green and red upconversion luminescence at 970 nm laser diode excitation were studied. It was shown that Tm3+ behaves as the sensitizer to Er3+ for the green upconversion luminescence through the energy transfer process: Tm 3+:H-3(4) + Er3+:I-4(15/2) -> Er3+:I-4(9/2) + Tm3+:H-3(6), and for the red upconversion luminescence through the energy transfer process: Tm3+:F-3(4) + Er3+:I-4(11/2) -> TM3+:H-3(6) + Er3+:4 F-9/2. Moreover, Er3+ acts as quenching center for the blue upconversion luminescence of TM3+. The sensitization of Tm3+ to Er3+ depends on the concentration of Yb3+. The intensity of blue, green and red emissions can be changed by adjusting the concentrations of the three kinds of rare earth ions. This research may provide useful information for the development of high color and spatial resolution devices and white light simulation. (C) 2006 Elsevier B.V. All rights reserved.
Resumo:
2.0 μm spectroscopic properties of Er<sup>3+</sup>/Tm<sup>3+</sup>/Ho<sup>3+</sup> triply-doped fluorophosphate glasses pumped by 808 nm and the energy transfer mechanisms between the three rare earth ions were investigated. J-O theory was used to calculate the parameters of Ho<sup>3+</sup> in fluorophosphate glasses. Absorption and emission cross-sections and the gain coefficients were calculated. The obtained lifetime r and spontaneous transition probability Ar of Ho<sup>3+</sup>:<sup>5</sup>I<inf>7</inf> level were 10.64 ms and 93.95 s<sup>-1</sup> respectively. The calculated maximum emission cross-section of 2.0 μm was 9.26×10<sup>-21</sup> cm<sup>2</sup>. The energy transfer analysis indicated that the cross-relaxation of Tm<sup>3+</sup> was important and the resonent energy transfer in Er<sup>3+</sup>&rarrHo<sup>3+</sup>, Tm<sup>3+</sup>&rarrHo<sup>3+</sup>, Er<sup>3+</sup>&rarrTm<sup>3+</sup>&rarrHo<sup>3+</sup> process was the main channel. The study revealed that the Er<sup>3+</sup>/Tm<sup>3+</sup>/Ho<sup>3+</sup> triply-doped fluorophosphate glass would be a potential material for 2.0 μm emission because of the efficient sensitization of Er<sup>3+</sup> and Tm<sup>3+</sup> to Ho<sup>3+</sup>.
Resumo:
Yb3+/Tm3+-codoped oxychloride germanate glasses for developing potential upconversion lasers have been fabricated and characterized. Structural properties were obtained based on the Raman spectra analysis, indicating that PbCl2 plays an important role in the formation of glass network and has an important influence on the maximum phonon energies of host glasses. Intense blue and weak red emissions centered at 477 and 650 nm, corresponding to the transitions (1)G(4) -> H-3(6) and (1)G(4) -> H-3(4), respectively, were observed at room temperature. With increasing PbCl2 content, the intensity of blue (477 nm) emission increases significantly, while the red (650 nm) emission increases slowly. The results indicate that PbCl2 has more influence on the blue emissions than the red emission in oxychloride germanate glasses. The possible upconversion mechanisms are discussed and estimated. Intense blue upconversion luminescence indicates that these oxychloride germanate glasses can be used as potential host material for upconversion lasers. C (c) 2005 Springer Science + Business Media, Inc.
Resumo:
The upconversion luminescence properties of Yb3+/Tm3+-codoped oxyfluoride tellurite glasses under 980 nm excitation are investigated experimentally. The intense blue and relatively weak red emissions centered at 475 and 649 nm corresponding to the transitions (1)G(4) -> H-3(6) and (1)G(4) -> H-3(4) of Tm3+, respectively, are simultaneously observed at room temperature. The effect of PbF2 on upconversion intensity is observed and discussed, and possible upconversion mechanisms are evaluated. The intense blue upconversion luminescence of Yb3+/Tm3+-codoped oxyfluoride tellurite glasses may be a potentially useful material for developing blue upconversion optical devices. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Thermal stability, Raman spectra and blue upconversion luminescence properties of Tm-3divided by /Yb-3divided by -codoped halide modified tellurite glasses have been Studied. The results showed that the mixed halide modified tellurite glass (TFCB) has the best thermal stability, the lowest phonon energies and the strongest upconversion emissions. The effect of halide on upconversion intensity is observed and discussed and possible upconversion mechanisms are evaluated. The intense blue upconversion luminescence of Tin (3+) in TFCB Glass may be a potentially useful material for developing upconversion optical devices.. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
Blue, green and red emissions through frequency upconversion and energy transfer processes in Tm3+/Er3+/Yb3+-codoped oxyhalide tellurite glass under 980 nm excitation are investigated. The intense blue (476 nm), green (530 and 545 nm) and red (656 nm) emissions are simultaneously observed at room temperature. The blue (476 nm) emission was originated from the (1)G(4)->H-3(6) transition of Tm3+. The green (530 and 545 nm), and red (656 nm) upconversion luminescences were identified from the H-2(11/2)->I-4(15/2), S-4(3/2)->I-4(15/2), and F-4(9/2)->I-4(15/2) transitions of Er3+, respectively. The energy transfer processes and possible upconversion mechanisms are evaluated. (C) 2005 Elsevier B.V. All rights reserved.
Resumo:
The thermal stability, Raman spectrum and upconversion properties of Tm^(3+)/Yb^(3+) co-doped new oxyfluoride tellurite glass are investigated. The results show that Tm^(3+)/Yb^(3+) co-doped oxyfluoride tellurite glass possesses good thermal stability, lower phonon energy, and intense upconversion blue luminescence. Under 980-nm laser diode (LD) excitation, the intense blue (475 nm) emission and weak red (649 nm) emission corresponding to the 1G4 -> 3H6 and 1G4 -> 3F4 transitions of Tm^(3+) ions respectively, were simultaneously observed at room temperature. The possible upconversion mechanisms are evaluated. The intense blue upconversion luminescence of Tm^(3+)/Yb^(3+) co-doped oxyfluoride tellurite glass can be used as potential host material for the development of blue upconversion optical devices.