47 resultados para TEC mapping
Resumo:
Global positioning system (GPS) can not only provide precise service for navigation and timing, but also be used to investigate the ionospheric variation. From the GPS observations, we can obtain total electron content (TEC), so-called GPS TEC, which is used to characterize the ionospheric structure. This thesis mainly concerns about GPS TEC data processing and ionospheric climatological analysis as follows. Firstly, develop an algorithm for high-resolution global ionospheric TEC mapping. According to current algorithms in global TEC mapping, we propose a practical way to calibrate the original GPS TEC with the existing GIM results. We also finish global/local TEC mapping by model fitting with the processed GPS TEC data; in practice, we apply it into the local TEC mapping in Southeast of China and obtain some initial results. Next, suggest a new method to calculate equivalent ionospheric global electron content (GEC). We calculate such an equivalent GEC with the TEC data along the geographic longitude 120°E. With the climatological analysis, we can see that GEC climatological variation is mainly composed of three factors: solar cycle, annual and semiannual variations. Solar cycle variation is dominant among them, which indicates the most prominent influence; both annual and semiannual variations play a secondary role and are modulated by solar activity. We construct an empirical GEC model driven by solar activity and seasonal factors on the basis of partial correlation analysis. Generally speaking, our researches not only show that GPS is advantageous in now-casting ionospheric TEC as an important observation, but also show that GEC may become a new index to describe the solar influence on the global ionosphere since the great correlation between GEC and solar activity factor indicates the close relationship between the ionosphere and solar activity.
Resumo:
When used in the determining the total electron content (TEC), which may be the most important ionospheric parameter, the worldwide GPS observation brings a revolutionary change in the ionospheric science. There are three steps in the data processing to retrieve GPS TEC: (1) to estimate slant TEC from the measurements of GPS signals; (2) to map the slant TEC into vertical; and (3) to interpolate the vertical TEC into grid points. In this scientific dissertation we focus our attention on the second step, the mapping theory and method to convert slant TEC into vertical. This is conventionally done by multiplying on the slant TEC a mapping function which is usually determined by certain models of electron density profile. Study of the vertical TEC mapping function is of significance in GPS TEC measurement. This paper first reviews briefly the three steps in GPS TEC mapping process. Then we compare the vertical TEC mapping function which were respectively calculated from the electron density profiles of the ionospheric model and retrieved from the observation of worldwide GPS TEC. We also perform the statistical analysis on the observational mapping functions. The main works and results are as follows: 1. We calculated the vertical TEC mapping functions for both SLM and Chapman models, and discussed the modulation of the ionosphere height to the mapping functions. We use two simple models, single layer model (SLM) and Chapman models, of the ionospheric electron density profiles to calculate the vertical TEC mapping function. In the case of the SLM, we discuss the control of the ionospheric altitude, i.e., the layer height hipp, to the mapping function. We find that the mapping function decreases rapidly as hipp increases. For the Chapman model we study also the control mapping function by both ionospheric altitude indicated by the peak electron density height hmF2, and the scale height, H, which present the thickness of the ionosphere. It is also found that the mapping function decreases rapidly as hmF2 increases. and it also decreases as H increases. 2. Then we estimate the mapping functions from the GPS observations and compare them with those calculated from the electron density models. We first, proposed a new method to estimate the mapping functions from GPS TEC data. This method is then used to retrieve the observational mapping function from both the slant TEC (TECS) provided by International GPS Service (IGS)and vertical TEC provide by JPL Global Ionospheric Maps (GIMs). Then we compare the observational mapping function with those calculated from the electron density models, SLM and Chapman. We find that the values of the observational mapping functions are much smaller than that from the model mapping functions, when the zenith angle is large enough. We attribute this to the effect of the plasmasphere which is above about 1000 km. 3. We statistically analyze the observational mapping functions and reveal their climatological changes. Observational mapping functions during 1999-2007 are used in our statistics. The main results are as follows. (1) The observational mapping functions decrease obviously with the decrement of the solar activity which is represented by the F10.7 index; (2) In annual variations of the observational mapping functions, the semiannual component is found at low-latitudes, and the remarkable seasonal variations at mid- and high-latitudes. (3) The diurnal variation of the observational mapping functions is that they are large in daytime and small at night, they become extremely small in the early morning before sunrise. (4) The observational mapping functions change with latitudes that they are smaller at lower latitudes and larger at higher. All of the above variations of the observational mapping functions are explained by the existence of the plasmasphere, which changes more slowly with time and more rapidly with latitude than the ionosphere does . In summary, our study on the vertical TEC mapping function imply that the ionosphere height has a modulative effect on the mapping function. We first propose the concept of the 'observational mapping functions' , and provide a new method to calculate them. This is important in improving the TEC mapping. It may also possible to retrieving the plasmaspheric information from GPS observations.
Resumo:
A two-point closure strategy in mapping closure approximation (MCA) approach is developed for the evolution of the probability density function (PDF) of a scalar advected by stochastic velocity fields. The MCA approach is based on multipoint statistics. We formulate a MCA modeled system using the one-point PDFs and two-point correlations. The MCA models can describe both the evolution of the PDF shape and the rate at which the PDF evolves.
Resumo:
The Mapping Closure Approximation (MCA) approach is developed to describe the statistics of both conserved and reactive scalars in random flows. The statistics include Probability Density Function (PDF), Conditional Dissipation Rate (CDR) and Conditional Laplacian (CL). The statistical quantities are calculated using the MCA and compared with the results of the Direct Numerical Simulation (DNS). The results obtained from the MCA are in agreement with those from the DNS. It is shown that the MCA approach can predict the statistics of reactive scalars in random flows.
Resumo:
The quantitative phase-mapping of the domain nucleation in MgO:LiNbO3 crystals is presented by using the digital holographic interferometry. An unexpected peak phase at the beginning of the domain nucleation is observed and it is lowered as the spreading of the domain nucleus. The existence of the nucleus changes the moving speed of the domain wall by pinning it for 3s. Such in-situ quantitative analysis of the domain nucleation process is a key to optimizing domain structure fabrication.
Resumo:
The phase mapping of domain kinetics under the uniform steady-state electric field is achieved and investigated in the LiNbO3 crystals by digital holographic interferometry. We obtained the sequences of reconstructed three-dimensional and two-dimensional wave-field phase distributions during the electric poling in the congruent and near stoichiometric LiNbO3 crystals. The phase mapping of individual domain nucleation and growth in the two crystals are obtained. It is found that both longitudinal and lateral domain growths are not linear during the electric poling. The phase mapping of domain wall motions in the two crystals is also obtained. Both the phase relaxation and the pinning-depinning mechanism are observed during the domain wall motion. The residual phase distribution is observed after the high-speed domain wall motion. The corresponding analyses and discussions are proposed to explain the phenomena.
Resumo:
Chromosomal homologies were established between human and two Chinese langurs (Semnopithecus francoisi, 2n=44, and S. phayrei, 2n=44) by chromosome painting with chromosome-specific DNA probes of all human chromosomes except the Y. Both langur species showed identical hybridization patterns in addition to similar G-banding patterns. In total, 23 human chromosome-specific probes detected 30 homologous chromosome segments in a haploid langur genome. Except for human chromosomes 1, 2, 6, 16 and 19 probes, which each gave signals on two non-homologous langur chromosomes respectively, all other probes each hybridized to a single chromosome. The results indicate a high degree of conservation of chromosomal synteny between human and these two Chinese langurs. The human chromosome 2 probe painted the entire euchromatic regions of langur chromosomes 14 and 19. Human chromosome 1 probe hybridized to three regions on langur autosomes, one region on langur chromosome 4 and two regions on langur chromosome 5. Human 19 probe hybridized on the same pattern to one region on chromosome 4 and to two regions on langur chromosome 5, where it alternated with the human chromosome 1 probe. Human 6 and 16 probes both hybridized to one region on each of the two langur autosomes 15 and 18. Only two langur chromosomes (12 and 21) were each labelled by probes specific for two whole human chromosomes (14 and 15 and 21 and 22 respectively). Comparison of the hybridization patterns of human painting probes on these two langurs with the data on other Old World primates suggests that reciprocal and Robertsonian translocations as will as inversions could have occurred since the divergance of human and the langurs from a common ancestor. This comparison also indicates that Asian colobines are karyotypically more closely related to each other that to African colobines.
Resumo:
We have made a set of chromosome-specific painting probes for the American mink by degenerate oligonucleotide primed-PCR (DOP-PCR) amplification of flow-sorted chromosomes. The painting probes were used to delimit homologous chromosomal segments among human, red fox, dog, cat and eight species of the family Mustelidae, including the European mink, steppe and forest polecats, least weasel, mountain weasel, Japanese sable, striped polecat, and badger. Based on the results of chromosome painting and G-banding, comparative maps between these species have been established. The integrated map demonstrates a high level of karyotype conservation among mustelid species. Comparative analysis of the conserved chromosomal segments among mustelids and outgroup species revealed 18 putative ancestral autosomal segments that probably represent the ancestral chromosomes, or chromosome arms, in the karyotype of the most recent ancestor of the family Mustelidae. The proposed 2n = 38 ancestral Mustelidae karyotype appears to have been retained in some modern mustelids, e.g., Martes, Lutra, ktonyx, and Vormela. The derivation of the mustelid karyotypes from the putative ancestral state resulted from centric fusions, fissions, the addition of heterochromatic arms, and occasional pericentric inversions. Our results confirm many of the evolutionary conclusions suggested by other data and strengthen the topology of the carnivore phylogenetic tree through the inclusion of genome-wide chromosome rearrangements. Copyright (C) 2002 S. KargerAG, Basel.
Resumo:
The black muntjac (Muntiacus crinifrons, 2n = 8 female/9 male) is a critically endangered mammalian species that is confined to a narrow region of southeastern China. Male black muntjacs have an astonishing X1X2Y1Y2Y3 sex chromosome system, unparalleled i
Resumo:
The Indian muntjac (Muntiacus muntjak vaginalis) has a karyotype of 2n=6 in the female and 7 in the male, the karyotypic evolution of which through extensive tandem fusions and several centric fusions has been well-documented by recent molecular cytogenetic studies. In an attempt to define the fusion orientations of conserved chromosomal segments and the molecular mechanisms underlying the tandem fusions, we have constructed a highly redundant (more than six times of whole genome coverage) bacterial artificial chromosome (BAC) library of Indian muntjac. The BAC library contains 124,800 clones with no chromosome bias and has an average insert DNA size of 120 kb. A total of 223 clones have been mapped by fluorescent in situ hybridization onto the chromosomes of both Indian muntjac and Chinese muntjac and a high-resolution comparative map has been established. Our mapping results demonstrate that all tandem fusions that occurred during the evolution of Indian muntjac karyotype from the acrocentric 2n=70 hypothetical ancestral karyotype are centromere-telomere (head-tail) fusions.
Resumo:
We constructed a high redundancy bacterial artificial chromosome library of a seriously endangered Old World Monkey, the Yunnan snub-nosed monkey (Rhinopithecus bieti) from China. This library contains a total of 136 320 BAC clones. The average insert size of BAC clones was estimated to be 148 kb. The percentage of small inserts (50-100 kb) is 2.74%, and only 2.67% non-recombinant clones were observed. Assuming a similar genome size with closely related primate species, the Yunnan snub-nosed monkey BAC library has at least six times the genome coverage. By end sequencing of randomly selected BAC clones, we generated 201 sequence tags for the library. A total of 139 end-sequenced BAC clones were mapped onto the chromosomes of Yunnan snub-nosed monkey by fluorescence in-situ hybridization, demonstrating a high degree of synteny conservation between humans and Yunnan snub-nosed monkeys. Blast search against human genome showed a good correlation between the number of hit clones and the size of the chromosomes, an indication of unbiased chromosomal distribution of the BAC library. This library and the mapped BAC clones will serve as a valuable resource in comparative genomics studies and large-scale genome sequencing of nonhuman primates. The DNA sequence data reported in this paper were deposited in GenBank and assigned the accession number CG891489-CG891703.