28 resultados para Synechococcus leopoliensis
Resumo:
藻胆体在低浓度磷酸缓冲溶液中发生解离,我们通过藻胆体在解离过程中荧光发射光谱的变化研究藻胆体中藻胆蛋白之间的光能传递. 1.发菜(Nostoc flagelliforme)藻胆体在0.9M磷酸缓冲溶液中较稳定,其77K荧光发射光谱中只有一个荧光峰F686,属于别藻蓝蛋白-B的荧光峰。当藻胆体在低浓度缓冲溶液中时,荧光峰除了686nm,还出现F648和F666肩,而且F648先于F666肩出现.这说明C-藻蓝蛋白(F'648)所捕获的光能已不能全部传给别藻蓝蛋白-B,并说明藻蓝蛋白与别藻蓝蛋白之间的断裂先于别藻蓝蛋白与别藻蓝蛋白-B之间的断裂。当进一步解离时,主峰仍位于648nm,次峰位于686nm.而666nm荧光肩消失,说明C-藻蓝蛋白所捕获的光能已不能传给别藻蓝蛋白,但能传给别藻蓝蛋白-B.我们因此提出在该藻胆体中藻胆蛋白之间的光能传递途径如下: C一藻红蛋白一C-藻蓝蛋白一别藻蓝蛋白_-别藻蓝蛋白-B 在藻胆体的结构方面,我们提出一部分C-藻蓝蛋白与别藻蓝蛋白相连接,另一部分与别藻蓝蛋白-B相连接. 2.聚球藻( synechococcus leopoliensis 625)藻胆体在0.6M,0.3M和0.1M磷酸缓冲液中解离时,其77K荧光光谱中只出现别藻蓝蛋白-B(F'684)和C-藻蓝蛋白(F655)的荧光峰消长变化,没有出现别藻蓝蛋白(F666)的荧光,我们为此提出在该藻胆体中光能从C-藻蓝蛋白传给别藻蓝蛋白-B有两条途径:一是直接传给别藻蓝蛋白-B,另一是传递给别藻蓝蛋白和别藻蓝蛋白-B的复合物,此复合物在0.lM到0,6M磷酸缓冲液中比较稳定.即: c-藻红蛋白→c—藻蓝蛋白—①别藻蓝蛋白-别藻蓝蛋白-B复合物、②别藻蓝蛋白-B
Resumo:
以单细胞蓝藻聚球藻Synechococcussp.PCC7942为材料,利用甲基磺酸乙酯(EMS)进行化学诱变获得了一个高CO2 需求突变株。它能在 4%CO2 下生长而不能在空气中生长。对突变株的初检表明:其回复突变率约为 10 -7。该突变株从高CO2 条件下转到空气中后,细胞在 2~ 3d内逐渐趋于死亡;其光合作用对外源无机碳的依赖性高于野生型细胞,碳酸酐酶活性也低于野生型细胞。在超微结构水平,突变株细胞内出现了不同类型的异常羧体:有的为棒状;有的为不规则状;有的为 空羧体",而且,类囊体周围糖原颗
Resumo:
Phyrobilisomes (PBS) are the major light-harvesting, protein-pigment complexes in cyanobacteria and red algae. PBS absorb and transfer light energy to photosystem (PS) II as well as PS I, and the distribution of light energy from PBS to the two photosystems is regulated by light conditions through a mechanism known as state transitions. In this study the quantum efficiency of excitation energy transfer from PBS to PS I in the cyanobacterium Synechococcus sp. PCC 7002 was determined, and the results showed that energy transfer from PBS to PS I is extremely efficient. The results further demonstrated that energy transfer from PBS to PS I occurred directly and that efficient energy transfer was dependent upon the allophycocyanin-B alpha subunit, ApcD. In the absence of ApcD, cells were unable to perform state transitions and were trapped in state 1. Action spectra showed that light energy transfer from PBS to PS I was severely impaired in the absence of ApcD. An apcD mutant grew more slowly than the wild type in light preferentially absorbed by phyrobiliproteins and was more sensitive to high light intensity. On the other hand, a mutant lacking ApcF, which is required for efficient energy transfer from PBS to PS II, showed greater resistance to high light treatment. Therefore, state transitions in cyanobacteria have two roles: (1) they regulate light energy distribution between the two photosystems; and (2) they help to protect cells from the effects of light energy excess at high light intensities. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Microcystins, one type of the cyanobacterial toxins, show a broad range of hazardous effects on other organisms. Most of the researches on the toxic effects of microcystins have involved in animals and higher plants. Little work, however, has been done on evaluating the mechanisms of microcystin toxicity on algae. In this study, the toxicological effects of microcystin-RR (MC-RR) on the cyanobacterium Synechococcus elongatus were investigated. For this purpose, six physio-biochemical parameters (cell optical density, reactive oxygen species (ROS), malondialdehyde (MDA), glutathione (GSH), glutathione peroxidase (GSH-Px) and glutathione S-transferase (GST)) were tested in algal cells when exposed to 100 mug(-1) microcystin-RR. The results showed that the growth of Synechococcus elongatus ( expressed as optical density) was significantly inhibited compared with the control. At the same time, the treated algae exhibited a pronounced increase in production of ROS and MDA after 6 days exposure to microcystin-RR. Signi. cant changes in GSH levels and GSH-Px, GSH activities were also detected in algal cells, with higher values being observed in the toxin treated algae after 6 days exposure. GST activities in the treated algae exhibited a decline after exposure and rapid augmentation on day 3, thereafter, they kept at a high level when compared to the control group. GSH contents and GSH-Px activities were also significantly raised in the toxin-treated algae cells from day 3, but they showed a sharp decrease on day 4, which was the onward of cell proliferation. These results suggested that oxidative stress manifested by elevated ROS levels and MDA contents might be responsible for the toxicity of microcystin to Synechococcus elongatus and the algal cells could improve their antioxidant ability through the enhancement of enzymatic and non-enzymatic preventive substances.
Resumo:
Freshwater Microcystis may form dense blooms in eutrophic lakes. It is known to produce a family of related cyclic hepatopeptides (microcystins, MC) that constitute a threat to aquatic ecosystems. Most toxicological studies of microcystins have focused on aquatic animals and plants, with few examining the possible effects of microcystins on phytoplankton. In this study we chose the unicellular Synechococcus elongatus (one of the most studied and geographically most widely distributed cyanobacteria in the picoplankton) as the test material and investigated the biological parameters: growth, pigment (chlorophyll-a, phycocyanin), photosynthetic activity, nitrate reductase activity, and protein and carbohydrate content. The results revealed that microcystin-RR concentrations above 100 mug (.) L-1 significantly inhibited the growth of Synechococcus elongatus. In addition, a change in color of the toxin-treated algae (chlorosis) was observed in the experiments. Furthermore, MC-RR markedly inhibited the synthesis of the pigments chlorophyll-a and phycocyanin. A drastic reduction in photochemical efficiency of PSII (F-v/F-m) was found after a 96-h incubation. Changes in protein and carbohydrate concentrations and in nitrate reductase activity also were observed during the exposure period. This study aimed to evaluate the mechanisms of microcystin toxicity on a cyanobacterium, according to the physiological and biochemical responses of Synechococcus elongatus to different doses of microcystin-RR. The ecological role of microcystins as an allelopathic substance also is discussed in the article. (C) 2004 Wiley Periodicals, Inc.
Resumo:
A high-CO2-requiring mutant of Synechococcus sp. PCC7942 las been isolated after chemical mutagenesis of ethyl methane sulphonate (EMS). It was able to grow at 4% CO2, but not under ambient CO2. The initial screening of the mutant showed that the genetic reversion rate was about 10(-7) and death occurred 2 -3 days after being transferred from 4% CO2 to the ambient air. Its photosynthetic dependence on external dissolved inorganic carbon was higher than that of the wild type cells, but its carbonic anhydrase activity was comparatively low. In the ultrastructural level, various types of aberrant carboxysomes appeared in the mutant cells: rod-shaped carboxysomes, irregular carboxysomes and the "empty-inclusion carboxysomes" with increasing number of glycogen granules surrounding the thylakoids. All these alterations indicated that the mutant was defective in utilizing the external CO2. The induction of carboxysomes by lower levels of CO2 and the biogenesis of carboxysomes are herein discussed.
Resumo:
Because of the shortage of phycoerythrin (PE) gene sequences from rhodophytes, peBA encoding beta- and alpha-subunits of PE from three species of red algae (Ceramium boydenn, Halymenia sinensis, and Plocamium telfariae) were cloned and sequenced. Different selection forces have affected the evolution of PE lineages. 8.9 % of the codons were subject to positive selection within the PE lineages (excluding high-irradiance adapted Prochlorococcus). More than 40 % of the sites may be under positive selection, and nearly 20 % sites are weakly constraint sites in high-irradiance adapted Prochlorococcus. Sites most likely undergoing positive selection were found in the chromophore binding domains, suggesting that these sites have played important roles in environmental adaptation during PE diversification. Moreover, the heterogeneous distribution of positively selected sites along the PE gene was revealed from the comparison of low-irradiance adapted Prochlorococcus and marine Synechococcus, which firmly suggests that evolutionary patterns of PEs in these two lineages are significantly different.
Resumo:
利用流式细胞仪分析了聚球蓝细菌在胶州湾的时空分布和营养盐的影响, 并对聚球蓝细菌亚群分化及其影响因子做了进一步探索。分离获得六株海洋聚球蓝细菌,分别定名为IOCAS0401、IOCAS0402、IOCAS0403、IOCAS0404、IOCAS0405、IOCAS0406。对其中两株(IOCAS0401、IOCAS0402)进行鉴定,并进一步研究了其生理生态特征。有三株菌(IOCAS0403、IOCAS0404、IOCAS0405)具有异养生长能力,选取其中两株(IOCAS0403、IOCAS0405)构建了遗传操作系统。具体内容摘要如下: 1、聚球蓝细菌在胶州湾的时空分布和营养盐的影响 胶州湾近一年的微微型浮游植物群落分析表明,聚球蓝细菌逐月的最高丰度中心有从湾外→湾口→湾内,再由湾内→湾口→湾外的变化趋势。在月变化中,聚球蓝细菌9月丰度最大,平均丰度为4.87×103 cells/ml,1-4月丰度很低,其中3月平均丰度最低为66 cells/ml。选取D5站的0 m和30 m作为表层和深层,对微微型浮游植物和营养盐的研究表明,在9、10月,N/P主要在10-30之间,聚球蓝细菌占优势51.6%(9月),98.5%(10月),其它月份大多数N/P<10或者>30,尤其以8月和11月最为显著,而这两个月也恰恰是超微真核浮游植物占优势92.1%(8月),84.8%(11月)。流式细胞仪数据表明,夏末和秋季部分站位会出现聚球蓝细菌的两个亚群,并且当N/P在33左右时可能会出现两个亚群分化,经过对N源的分析后发现,产生亚群分化时NO3-N/PO4-P在14左右。 2、 所分离到的六株聚球蓝细菌的吸收光谱表明,胶州湾的聚球蓝细菌色素种类十分丰富,基本都含有叶绿素a和藻红蛋白(PE),同时也有含藻蓝蛋白(PC)的种群。研究中发现有三株菌具有兼性异养生长能力,当有光照的时候,合成色素,自养生长进行产氧光合作用,没有光照时,色素逐渐消失,启动异养生长的代谢过程。 3、 利用流式细胞仪分析黄海近海水样中聚球蓝细菌种群组成,发现主要有不同藻红蛋白含量的两个类群组成,流式细胞仪分选后,用SN培养基培养纯化得到两个亚群优势种聚球蓝细菌IOCAS0401和IOCAS0402。荧光显微镜下镜检,两株菌在蓝色激发光(450-490 nm)下发桔红色荧光,并且IOCAS0401的荧光较IOCAS0402强。扫描电镜观察发现IOCAS0401呈椭圆形,长轴大约1.2 μm左右;IOCAS0402近似球形,直径约有0.6 μm左右。吸收光谱的检测表明,两者都有叶绿素a和藻红蛋白的特征吸收峰。其中IOCAS0401有藻尿胆素(PUB)和藻红胆素(PEB)吸收锋,而IOCAS0402只有PEB的吸收峰,两者均无藻蓝蛋白(PC)吸收锋。通过16S rDNA测序分析,结果表明两株菌都位于MC-A中的clade II类群,与从日本海域分离获得的MBIC10224菌株有较高的亲缘关系,虽然这三株菌都归为clade II,但单独成一分支,表明它们带有明显的西太平洋特色。 4、 选取其中两株IOCAS0403和IOCAS0405构建遗传系统,抗生素图谱表明,IOCAS0403对四环素有抗性,自然转化结果显示,IOCAS0403不能自然转化,IOCAS0405具有自然转化能力,同时两者都不能进行接合转移。
Resumo:
利用自然光照条件,在不同铬离子质量浓度下,对5种藻类的生长进行了实验研究。研究结果表明:5种藻类在不同的光波长下,其吸收光谱存在两个最强的吸收区:420~440nm的蓝紫光部分和660nm的红光部分;在不同铬离子质量浓度0~20.63mg·L-1范围内,5种藻类生长受到不同程度的抑制,其耐受性也尽不相同,经过分析和比较后得出5种藻类对铬的耐受性大小顺序为:微囊藻(Microcystis)>水华鱼腥藻(Anabaena flos-aquae)>细长聚球藻(Synechococcus elongatus)>斜
Resumo:
Changes in growth, photosynthetic pigments, and photosystem II (PS II) photochemical efficiency as well as production of siderophores of Microcystis aeruginosa and Microcystis wesenbergii were determined in this experiment. Results showed growths of M. aeruginosa and M. wesenbergii, measured by means of optical density at 665 nm, were severely inhibited under an iron-limited condition, whereas they thrived under an iron-replete condition. The contents of chlorophyll-a, carotenoid, phycocyanin, and allophycocyanin under an iron-limited condition were lower than those under an iron-replete condition, and they all reached maximal contents on day 4 under the iron-limited condition. PS II photochemical efficiencies (maximal PS II quantum yield), saturating light levels (I-k ) and maximal electron transport rates (ETRmax) of M. aeruginosa and M. wesenbergii declined sharply under the iron-limited condition. The PS II photochemical efficiency and ETRmax of M. aeruginosa rose , whereas in the strain of M. wesenbergii, they declined gradually under the iron-replete condition. In addition, I-k of M. aeruginosa and M. wesenbergii under the iron-replete condition did not change obviously. Siderophore production of M. aeruginosa was higher than that of M. wesenbergii under the iron-limited condition. It was concluded that M. aeruginosa requires higher iron concentration for physiological and biochemical processes compared with M. wesenbergii, but its tolerance against too high a concentration of iron is weaker than M. wesenbergii.
Resumo:
Synechocystis sp. PCC 6803 exposed to chill (5 degrees C)-light (100 mu mol photons m(-2) s(-1)) stress loses its ability to reinitiate growth. From a random insertion mutant library of Synechocystis sp. PCC 6803, a sll1242 mutant showing increased sensitivity to chill plus light was isolated. Mutant reconstruction and complementation with the wild-type gene confirmed the role of sll1242 in maintaining chill-light tolerance. At 15 degrees C, the autotrophic and mixotrophic growth of the mutant were both inhibited, paralleled by decreased photosynthetic activity. The expression of sll1242 was upregulated in Synechocystis sp. PCC 6803 after transfer from 30 to 15 degrees C at a photosynthetic photon flux density of 30 mu mol photons m(-2) S-1. sll1242, named ccr (cyanobacterial cold resistance gene)- 1, may be required for cold acclimation of cyanobacteria in light.
Resumo:
Fatty acid desaturases are enzymes that introduce double bonds into the hydrocarbon chains of fatty acids. The fatty acid desaturases from 37 cyanobacterial genomes were identified and classified based upon their conserved histidine-rich motifs and phylogenetic analysis, which help to determine the amounts and distributions of desaturases in cyanobacterial species. The filamentous or N-2-fixing cyanobacteria usually possess more types of fatty acid desaturases than that of unicellular species. The pathway of acyl-lipid desaturation for unicellular marine cyanobacteria Synechococcus and Prochlorococcus differs from that of other cyanobacteria, indicating different phylogenetic histories of the two genera from other cyanobacteria isolated from freshwater, soil, or symbiont. Strain Gloeobacter violaceus PCC 7421 was isolated from calcareous rock and lacks thylakoid membranes. The types and amounts of desaturases of this strain are distinct to those of other cyanobacteria, reflecting the earliest divergence of it from the cyanobacterial line. Three thermophilic unicellular strains, Thermosynechococcus elongatus BP-1 and two Synechococcus Yellowstone species, lack highly unsaturated fatty acids in lipids and contain only one Delta 9 desaturase in contrast with mesophilic strains, which is probably due to their thermic habitats. Thus, the amounts and types of fatty acid desaturases are various among different cyanobacterial species, which may result from the adaption to environments in evolution. Copyright (c) 2008 Xiaoyuan Chi et al.
Resumo:
Background: Serine/threonine kinases (STKs) have been found in an increasing number of prokaryotes, showing important roles in signal transduction that supplement the well known role of two-component system. Cyanobacteria are photoautotrophic prokaryotes able to grow in a wide range of ecological environments, and their signal transduction systems are important in adaptation to the environment. Sequence information from several cyanobacterial genomes offers a unique opportunity to conduct a comprehensive comparative analysis of this kinase family. In this study, we extracted information regarding Ser/Thr kinases from 21 species of sequenced cyanobacteria and investigated their diversity, conservation, domain structure, and evolution. Results: 286 putative STK homologues were identified. STKs are absent in four Prochlorococcus strains and one marine Synechococcus strain and abundant in filamentous nitrogen-fixing cyanobacteria. Motifs and invariant amino acids typical in eukaryotic STKs were conserved well in these proteins, and six more cyanobacteria- or bacteria-specific conserved residues were found. These STK proteins were classified into three major families according to their domain structures. Fourteen types and a total of 131 additional domains were identified, some of which are reported to participate in the recognition of signals or substrates. Cyanobacterial STKs show rather complicated phylogenetic relationships that correspond poorly with phylogenies based on 16S rRNA and those based on additional domains. Conclusion: The number of STK genes in different cyanobacteria is the result of the genome size, ecophysiology, and physiological properties of the organism. Similar conserved motifs and amino acids indicate that cyanobacterial STKs make use of a similar catalytic mechanism as eukaryotic STKs. Gene gain-and-loss is significant during STK evolution, along with domain shuffling and insertion. This study has established an overall framework of sequence-structure-function interactions for the STK gene family, which may facilitate further studies of the role of STKs in various organisms.
Resumo:
Background: Serine/threonine kinases (STKs) have been found in an increasing number of prokaryotes, showing important roles in signal transduction that supplement the well known role of two-component system. Cyanobacteria are photoautotrophic prokaryotes able to grow in a wide range of ecological environments, and their signal transduction systems are important in adaptation to the environment. Sequence information from several cyanobacterial genomes offers a unique opportunity to conduct a comprehensive comparative analysis of this kinase family. In this study, we extracted information regarding Ser/Thr kinases from 21 species of sequenced cyanobacteria and investigated their diversity, conservation, domain structure, and evolution. Results: 286 putative STK homologues were identified. STKs are absent in four Prochlorococcus strains and one marine Synechococcus strain and abundant in filamentous nitrogen-fixing cyanobacteria. Motifs and invariant amino acids typical in eukaryotic STKs were conserved well in these proteins, and six more cyanobacteria- or bacteria-specific conserved residues were found. These STK proteins were classified into three major families according to their domain structures. Fourteen types and a total of 131 additional domains were identified, some of which are reported to participate in the recognition of signals or substrates. Cyanobacterial STKs show rather complicated phylogenetic relationships that correspond poorly with phylogenies based on 16S rRNA and those based on additional domains. Conclusion: The number of STK genes in different cyanobacteria is the result of the genome size, ecophysiology, and physiological properties of the organism. Similar conserved motifs and amino acids indicate that cyanobacterial STKs make use of a similar catalytic mechanism as eukaryotic STKs. Gene gain-and-loss is significant during STK evolution, along with domain shuffling and insertion. This study has established an overall framework of sequence-structure-function interactions for the STK gene family, which may facilitate further studies of the role of STKs in various organisms.
Resumo:
A genomic fragment encoding alpha(APC) and beta(APC) (i.e., alpha and beta units of the allophycocyanin, APC) from Anacystis nidulans UTEX 625 was cloned and sequenced. This fragment, containing a non-coding sequence of 56 nucleotides in between, was then subcloned into the expression vector pMal-c2 downstream from and in frame with the malE gene of E. coli encoding MBP ( maltose binding protein). The fusion protein was purified by amylose affinity chromatography and cleaved by coagulation factor Xa. alpha(APC) and beta(APC) were then separated from MBP and MBP fusion proteins, respectively, and concentrated by membrane centrifugation. The study provides a method to produce recombinant allophycocyanin subunits for biomedical and biotechnological applications.