32 resultados para Suction Bucket Foundation


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The experimental investigation of the response of suction bucket foundation in fine sand layer under horizontal dynamic loading has been carried out. The developments of settlement and excess pore pressure of sand foundation have been mainly studied. It is shown that the sand surrounding the bucket softens or even liquefies at the first stage if the loading amplitude is over a critical value, at later stage, the bucket settles and the sand layer consolidates gradually. With the solidification of the liquefied sand layer and the settlement of the bucket, the movement of the sand layer and the bucket reach a stable state.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents the results of a series of centrifuge model tests performed to study the behavior of suction bucket foundations for a tension leg platform in the Bohai Bay, China. The target lateral loadings were from ice-sheet-induced structural vibrations at a frequency of 0.8-1.0 Hz. The results indicate that excess pore water pressures reach the highest values within a depth of 1.0-1.5 in below the mud line. The pore pressures and the induced settlement and lateral displacement increase with the amplitude of the cyclic loading. Two failure modes were observed: liquefaction in early excitations and settlement-induced problems after long-term excitations. (c) 2006 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Abstract: The static bearing capacity of suction caisson with single-and four-caissons in saturated sand foundation is studied by experiments. The characteristics of bearing capacity under vertical and horizontal loadings are obtained ex- perimentally. The effects of loading direction on the bearing capacity of four-caissons are studied under horizontal load- ing. The comparison of the bearing capacity of single-caisson and four-caisson foundation, the sealed condition of cais- son’s top and loading rate are analyzed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Suction bucket foundations are widely used in the offshore platform for the exploitation of the offshore petroleum and natural gas resources. During winter seasons, ice sheets formed in Bohai Bay will impose strong impact and result in strong vibration on the platform. This paper describes a dynamic loading device developed on the geotechnical centrifuge and its application in modeling suction bucket foundation under the equivalent ice-induced vibration loadings. Some experimental results are presented. It is shown that when the loading amplitude is over a critical value, the sand at the upper part around the bucket softens or even liquefies. The excess pore pressure decreases from the upper part to the lower part of the sand foundation in vertical direction while decreases from near to far away from the bucket's side wall in the horizontal direction. Large settlements of the bucket and the sand around the bucket occur under the horizontal dynamic loading. The dynamic responses of the bucket with smaller size are heavier.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Centrifuge experiments are carried out to investigate the responses of suction bucket foundations under horizontal dynamic loading. The effects of loading amplitude, the size of the bucket and the structural weight on the dynamic responses are investigated. It is shown that, when the loading amplitude is over a critical value, the sand at the upper part around the bucket softens or even liquefies. The liquefactio...

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Centrifugal experiments were carried out to investigate the responses of suction bucket foundations under horizontal and vertical dynamic loading. It is shown that when the loading amplitude is over a critical value, the sand at the upper part around the bucket is softened or even liquefied. The excess pore pressure decreases from the upper part to the lower part of the sand layer in the vertical direction and decreases radially from the bucket's side wall in the horizontal direction. Large settlements of the bucket and the sand layer around the bucket are induced by dynamic loading. The dynamic responses of the bucket with smaller height (the same diameter) are heavier.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The capacity degradation of bucket foundation in liquefied sand layer under cyclic loads such as equivalent dynamic ice-induced loads is studied. A simplified numerical model of liquefied sand layer has been presented based on the dynamic centrifuge experiment results. The ice-induced dynamic loads are modeled as equivalent sine cyclic loads, the liquefaction degree in different position of sand layer and effects of main factors are investigated. Subsequently, the sand resistance is represented by uncoupled, non-linear sand springs which describe the sub-failure behavior of the local sand resistance as well as the peak capacity of bucket foundation under some failure criterion. The capacity of bucket foundation is determined in liquefied sand layer and the rule of capacity degradation is analyzed. The capacity degradation in liquefied sand layer is analyzed comparing with that in non-liquefied sand layer. The results show that the liquefaction degree is 0.9 at the top and is only 0.06 at the bottom of liquefied sand layer. The numerical results are agreement well with the centrifugal experimental results. The value of the degradation of bucket capacity is 12% in numerical simulating whereas it is 17% in centrifugal experiments.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Abstract: Experiments to determine the horizontal static bearing capacity are carried out first. The static bearing capacity is a reference for choosing the amplitudes of dynamic load. Then a series of experiments under dynamic horizontal load are carried out in laboratory to study the influences of factors, such as the scales of bucket, the amplitude and frequency of load, the density of soils etc.. The responses of bucket foundations in calcareous sand under horizontal dynamic load are analyzed according to the experimental results. The displacements of bucket and sand layer are analyzed.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Bucket Foundations under Dynamic Loadings The liquefaction deformation of sand layer around a bucket foundation is simulated under equivalent dynamic ice-induced loadings. A simplified numerical model is presented by taking the bucket-soil interaction into consideration. The development of vertical and horizontal liquefaction deformations are computed under equivalent dynamic ice-induced loadings. Firstly, the numerical model and results are proved to be reliable by comparing them with the centrifuge testing results. Secondly, the factors and the development characteristics of liquefaction deformation are analyzed. Finally, the following numerical simulation results are obtained: the liquefaction deformation of sand layer increases with the increase of loading amplitude and with the decrease of loading frequency and sand skeleton’s strength. The maximum vertical deformation is located on the sand layer surface and 1/4 times of the bucket’s height apart from the bucket’s side wall (loading boundary). The maximum horizontal deformation occurs at the loading boundary. When the dynamic loadings is applied for more than 5 hours, the vertical deformation on the sand layer surface reaches 3 times that at the bottom, and the horizontal deformation at 2.0 times of the bucket height apart from the loading boundary is 3.3% of which on the loading boundary.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In this paper we investigated the responses of saturated sand under horizontal vibration loading induced by a bucket foundation. It is shown that the saturated sand liquefies gradually since the vibration loading is applied on. The maximum displacement on the surface of sand layer occurs near the loading end and in this zone the sand is compressed and moves upwards. The liquefaction zone is developed from the upper part near the loading side and stopped gradually.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

通过有限元计算,分析了不同长径比下横向和竖向承载力、载荷位移曲线以及耦合载荷作用下的极限承载力特性,并与实验结果进行了对照。结果表明:当竖向压力小于某临界值时,基础的横向极限承载力随着竖向压力的增加而增加;但是当竖向压力增大到超过该临界值以后,横向极限承载力反而会随竖向压力的增大而降低。随着长径比的增加,基础承载力,特别是横向承载力有比较明显的提高。

Relevância:

80.00% 80.00%

Publicador:

Resumo:

桶形基础是近年开发的一种新型的可广泛应用于海洋工程结构的基础形式。由于多种优越性而受到各国石油部门的重视,并引起许多研究人员的关注。通过在饱和砂中的单桶和四桶基础模型实验,研究了桶形基础的静承载特性。分别进行了垂直方向和水平方向的加载实验,其中,四桶基础水平方向加载又分为沿四桶中心构成的正方形的平行边方向和对角线方向施加,得到了载荷位移曲线,对单桶和四桶基础承载力特性,以及加载方向和速率的影响进行了分析和比较。 

Relevância:

80.00% 80.00%

Publicador:

Resumo:

通过离心机实验研究发现,在等效动冰载作用下,桶周围砂土地基发生软化或液化。当载荷幅值超过一定值时,在激振过程中桶产生了明显的沉降,桶的沉降较远处土体明显地快。由于从桶近区到远区的沉降差别,导致离桶一定距离处出现一个环状裂纹。随着载荷幅值的增加、结构重的增加和桶高的减小(桶直径相同),桶的沉降增加。

Relevância:

80.00% 80.00%

Publicador:

Resumo:

本文进行了竖向下压载荷作用下,桶形基础与土相互作用的模型试验及非线性数值分析,计算结果与模型试验的荷载-沉降曲线吻合较好,同时对桶形基础的不同部位在承担竖向下压载荷时所承担的比例变化进行分析,给出顶板土反力、侧壁摩阻的分布形式及端部阻力的特性,并对顶板对桶形基础受力特性的影响及桶形基础与实体基础受力特性的差别进行了计算与分析。

Relevância:

80.00% 80.00%

Publicador:

Resumo:

对垂向动载荷作用下吸力式桶形基础(简称桶基)响应进行离心机实验模拟.结果表明,在垂向动载荷作用下,当载荷幅值超过一定值时,桶基周围砂土软化甚至液化,发生明显的沉降.桶基周围土体的沉降随着载荷幅值的增加而增加.由于液化区的滤波和对动载的衰减作用,发生沉降的范围有限,离桶壁约一倍桶高距离.超孔隙水压从桶基边沿水平向逐渐衰减,从土面开始往下逐渐衰减到零.桶基周围砂土完全液化的厚度随载荷幅值的增加而增加,最大值约为桶高的40%.