16 resultados para Skin color change
Resumo:
The color change induced by triple hydrogen-bonding recognition between melamine and a cyanuric acid derivative grafted on the surface of gold nanoparticles can be used for reliable detection of melamine. Since such a color change can be readily seen by the naked eye, the method enables on-site and real-time detection of melamine in raw milk and infant formula even at a concentration as low as 2.5 ppb without the aid of any advanced instruments.
Resumo:
For the purpose of human-computer interaction (HCI), a vision-based gesture segmentation approach is proposed. The technique essentially includes skin color detection and gesture segmentation. The skin color detection employs a skin-color artificial neural network (ANN). To merge and segment the region of interest, we propose a novel mountain algorithm. The details of the approach and experiment results are provided. The experimental segmentation accuracy is 96.25%. (C) 2003 Society of Photo-Optical Instrumentation Engineers.
Resumo:
介绍了一种基于单目视觉的肤色干扰下的变形手势跟踪方法.根据跟踪过程中所用到的基本手势特征,提出了一种基于PGH(成对几何直方图)的静态手势识别方法.为了解决跟踪过程中的肤色干扰问题,实现了基于Kalman滤波器的手势预测跟踪.为了解决跟踪过程中的初始化问题,提出了一种基于层次结构的跟踪初始化解决方案.实验结果表明,该方法能够在肤色干扰的情况下有效地对变形手势进行跟踪,并能够满足基于视觉的实时人机交互的要求.
Resumo:
Novel functional oligonucleotides, especially DNAzymes with RNA-cleavage activity, have been intensively studied due to their potential applications in therapeutics and sensors. Taking advantage of the high specificity of 17E DNAzyme for Pb2+, highly sensitive and selective fluorescent, electrochemical and colorimetric sensors have been developed for Pb2+. In this work, we report a simple, sensitive and label-free 17E DNAzyme-based sensor for Pb2+ detection using unmodified gold nanoparticles (GNPs) based on the fact that unfolded single-stranded DNA could be adsorbed on the citrate protected GNPs while double-stranded DNA could not. By our method the substrate cleavage by the 17E DNAzyme in the presence of Pb2+ could be monitored by color change of GNPs, thereby Pb2+ detection was realized.
Resumo:
Here, we report a simple and Sensitive colorimetric detection method for Hg2+ ions With a tunable detection range based on DNA oligonucleotides and unmodified gold nanoparticles (DNA/AuNPs) sensing system. Complementary DNA strands with T-T mismatches could effectively protect AuNPs from salt-induced aggregation. While in the presence of Hg2+ ions T-Hg2+-T coordination chemistry leads to the formation of DNA duplexes, and AuNPs are less well protected thus aggregate at the same salt concentration, accompanying by color change from red to blue. By rationally varying the number of T-T mismatches in DNA oligonucleotides, the detection range could be tuned.
Resumo:
In this work, the absorption spectral characteristics and color-change reaction mechanism of cobalt(II) chloride(COCl2) in alcohol organic solvents has been investigated in the presence of water, and then the optimum conditions for determining the water content in the solvents were selected. Results indicated that the absorption spectra Of COCl2 in alcohols decreased with the increment of water content. At the maximum absorption wavelength of 656 nm, there were good linear relationships between the logarithm of the absorbance and the water content in organic solvents such as ethanol, n-propanol, iso-propanol and n-butanol with related coefficients in the range of 0.9996 similar to 0.9998. For determining water content in organic solvents, this method is simple, rapid, sensitive, reproducible and environmentally friendly. Furthermore, the linear range cannot restrict determination of the water content in organic solvents. This method had been applied to determine the water content in ethanol and n-butanol with satisfactory recovery of water in n-butanol between 98.41%-101.29%.
Resumo:
Lysozyme monolayer-protected gold nanoparticles (Au NPs) which are hydrophilic and biocompatible and show excellent colloidal stability at low temperature, ca. 4 degrees C, were synthesized in aqueous medium by chemical reduction of HAuCl4 with NaBH4 in the presence of a familiar small enzyme, lysozyme. UV-vis spectra, transmission electron microscopy (TEM), atomic force microscopy, and X-ray photoelectron spectroscopy characterization of the as prepared nanoparticles revealed the formation of well-dispersed An NPs of ca. 2 nm diameter. Moreover, the color change of the An NP solution as well as UV-vis spectroscopy and TEM measurements have also demonstrated the occurrence of Ostwald ripening of the nanoparticles at low temperature. Further characterization with Fourier transform infrared spectroscopy (FTIR) and dynamic light scattering indicated the formation of a monolayer of lysozyme molecules on the particle surface. FTIR data also indicated the intactness of the protein molecules coated on An NPs. All the characterization results showed that the monodisperse An NPs are well-coated directly with lysozyme. Driven by the dipole-dipole attraction, the protein-stabilized Au NPs self-assembled into network structures and nanowires upon aging under ambient temperature.
Resumo:
Color centers and impurity defects of Ce:YAG crystals grown in reduction atmosphere by temperature gradient techniques have been investigated by means of gamma irradiation and thermal treatments. Four absorption bands associated with color centers or impurity defects at 235, 255, 294 and 370 nm were observed in as-grown crystals. Changes in optical intensity of the 235 and 370 nm bands after gamma irradiation indicate that they are associated with F+-type color center. Charge state change processes of Fe3+ impurity and Ce3+ ions take place in the irradiation process. The variations of Ce3+ ions concentration clearly indicate that Ce4+ ions exist in Ce:YAG crystals and gamma irradiations could increase the concentration of Ce3+ ions. Annealing treatments and the changes in optical density suggest that a heterovalent impurity ion associated with the 294 nm band seems to be present in the crystals. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
The phase-matching condition of high-order harmonic generation driven by intense few-cycle pulses could be controlled by adding second-harmonic pulses to change the ionization fraction of the gaseous medium. The harmonic generation efficiency could be improved by moving the phase-matching point with an all-optical control of the ionization fraction or a proper change of the confocal parameter. A specific order of harmonics could be easily controlled to reach phase matching at a fixed higher gas pressure by adding second-harmonic pulses with a suitable intensity. Such an all-optical phase-matching control was demonstrated to be dependent upon the temporal delay between the fundamental-wave and second harmonic pulses.
Resumo:
20 at.% Yb:YAG single crystals have been grown by the CZ method and gamma-ray irradiation induced color centers and valence change of Fe3+ and Yb3+ ions in Yb:YAG have been studied. One significant 255 nm absorption band was observed in as-grown crystals and was attributed to Fe3+ ions. Two additional absorption (AA) bands located at 255 nm and 345 nm, respectively, were produced after gamma irradiation. The changes in the AA spectra after gamma irradiation and air annealing are mainly related to the charge exchange of the Fe3+, Fe2+, oxygen vacancies and F-type color centers. Analysis shows that the broad AA band is associated with Fe2+ ions and F-type color centers. The transition Yb3+ Yb2+ takes place as an effect of recharging of one of the Yb3+ ions from a pair in the process of gamma irradiation. (C) 2006 Elsevier Ltd. All rights reserved.
Resumo:
We report refractive index change in a femtosecond laser irradiated Nd3+-doped phosphate glass. The effects of annealing temperature on the refractive index change of the glass have been investigated. Absorption spectra of the glass sample before and after femtosecond laser irradiation and subsequent annealing were measured. The results indicate that multiphoton absorption can undertake although there are intrinsic absorption for the glass in irradiation wavelength. The results may be useful for fabrication of three-dimensional integrated optics devices and waveguide laser devices in this glass. (c) 2004 Elsevier B.V. All rights reserved.
Resumo:
Gamma-ray irradiation induced color centers and charge state recharge of impurity and doped ion in 10 at.% Yb:YAP have been studied. The change in the additional absorption (AA) spectra is mainly related to the charge exchange of the impurity Fe2+, Fe3+ and Yb3+ ions. Two impurity color center bands at 255 and 313 nm were attributed to Fe3+ and Fe2+ ions, respectively. The broad AA band centered at 385 nm may be associated with the cation vacancies and F-type center. The transition Yb3+ -> Yb2+ takes place in the process of gamma-irradiation. Oxygen annealing and gamma-ray irradiation lead to an opposite effect on the absorption properties of the Yb:YAP crystal. In the air annealing process, the transition Fe2+ -> Fe3+ and Yb2+ -> Yb3+ take place and the color centers responsible for the 385 nm band was destroyed. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
The SR-protein kinase activity was analyzed and the cytological changes were observed during oocyte maturation in bisexual transparent color crucian carp ( Carassius auratus color variety). The results revealed that the SR-protein kinase activity was sensitive to the artificially induced spawning hormones, and the change of oscillatory activity was similar to that of the maturation-promoting factor (MPF) kinase that regulates meiotic cell cycle in fish.
Resumo:
Multi-color LLP phenomenon was observed in Mn2+-doped ZnO-B2O3-SiO2 glassceramics after the irradiation of a UV lamp at room temperature. Transparent ZnO-B2O3-SiO2 glass emitted reddish LLP while opaque glass-ceramics prepared by the glass sample after heat treatment emitted yellowish or greenish LLP. The change of the phosphorescence is due to the alteration of co-ordination state of Mn2+. The phosphorescence of the samples was seen in the dark with naked eyes even 12 h after the irradiation with a UV lamp (lambda(max) = 254 nm) for 30 min. Based on the approximative t(-1) decay law of the phosphorescence, we suggest that the LLP is attributed to the thermally assisted electron-hole recombination.