249 resultados para Silver addition
Resumo:
We investigated the effect of cerium oxide on the precipitation of Ag nanoparticles in silicate glass via a femtosecond laser irradiation and successive annealing. Absorption spectra show that Ce3+ ions may absorb part of the laser energy via multiphoton absorption and release free electrons, resulting in an increase of the concentration of Ag atoms and a decrease of the concentration of hole-trapped color centers, which influence precipitation of the Ag nanoparticles. In addition, we found that the formed Ag-0 may reduce Ce4+ ions to Ce3+ ions during the annealing process, which inhibits the growth of the Ag nanoparticles.
Resumo:
Silver nanowires in large quantities can be obtained through a simple method in the absence of a surfactant or polymer and without addition of external seeding nanocrystallites. A plausible mechanism was proposed to elucidate the formation mechanism of silver nanowires based on TEM studies.
Resumo:
Coatings with layer structures of Ag/glass, Ag/Cr/glass, and Ag/Cr-Ag/Cr/glass deposited with magnetron sputtering are investigated. The results indicate that the performance for reflectance, hardness, adherence, and humidity durability of the silver coatings with Ag/Cr/glass and Ag/Cr-Ag/Cr/glass structures are better than pure silver film. In addition, the silver coatings with an Ag/Cr-Ag/glass structure present more advantages than that of the Ag/Cr/glass. Reasons are analyzed accordingly. (C) 2004 Society of Photo-Optical Instrumentation Engineers.
Resumo:
The planktivorous filter-feeding silver carp (Hypophthalmichthys molitrix) and bighead carp (Aristichthys nobilis) are the attractive candidates for bio-control of plankton communities to eliminate odorous populations of cyanobacteria. However, few studies focused on the health of such fishes in natural water body with vigorous toxic blooms. Blood parameters are useful and sensitive for diagnosis of diseases and monitoring of the physiological status of fish exposed to toxicants. To evaluate the impact of toxic cyanobacterial blooms on the planktivorous fish, 12 serum chemistry variables were investigated in silver carp and bighead carp for 9 months, in a large net cage in Meiliang Bay, a hypereutrophic region of Lake Taihu. The results confirmed adverse effects of cyanobacterial blooms on two phytoplanktivorous fish, which mainly characterized with potential toxicogenomic effects and metabolism disorders in liver, and kidney dysfunction. In addition, cholestasis was intensively implied by distinct elevation of all four related biomarkers (ALP, GGT, DBIL, TBIL) in bighead carp. The combination of LDH, AST activities and DBIL, URIC contents for silver carp, and the combination of ALT. ALP activities and TBIL, DBIL. URIC concentrations for bighead carps were found to most strongly indicate toxic effects from cyanobacterial blooms in such fishes by a multivariate discriminant analysis. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Silver crucian carp (Carassius auratus gibelio) is a unique gynogenetic fish. Because of its specific genetic background and reproduction mode, it is an intriguing model system for understanding regulatory mechanism of oocyte maturation division. It keeps its chromosomal integrity by inhibiting the first meiotic division (no extrusion of the first pole body). The spindle behavior during oocyte maturation is significantly different from that in gonochoristic fish. The chromosomes are first arranged in a tripolar spindle, and then they turn around and are reunited mutually to form a normal bipolar spindle. A new member of the fish A-type cyclin gene, cyclin A2, has been isolated by suppression of subtractive hybridization on the basis of its differential transcription in fully-grown oocytes between the gynogenetic silver crucian carp and gonochoristic color crucian carp. There are 18 differing amino acids in the total 428 residues of cyclin A2 between the two forms of crucian carps. In addition, cDNAs of cyclin A1 and cyclin B have also been cloned from them. Thus two members of A-type cyclins, cyclin A1 and cyclin A2, are demonstrated to exist in fish, just as in frog, humans, and mouse. Northern blotting reveals that cyclin A2 mRNA is more than 20-fold and cyclin A1 mRNA is about 2-fold in fully grown oocytes of gynogenetic silver crucian carp compared to gonochoristic color crucian carp. However, cyclin B does not show such a difference between them. Western blot analysis also shows that the cyclin A2 protein stockpiled in fully grown oocytes of gynogenetic crucian carp is much more abundant than in gonochoristic crucian carp. Moreover, two different cyclin A2 expression patterns during oocyte maturation have been revealed in the two closely related crucian carps. For color crucian carp, cyclin A2 protein is translated only after hormone stimulation. For silver crucian carp, cyclin A2 protein can be detected throughout the process of maturation division. The different expression of cyclin A2 may be a clue to understanding the special maturation division of gynogenetic silver crucian carp.
Resumo:
We introduce a fast and simple method, named the potentiostatic electrodeposition technique, to deposit metal particles on the planar surface for application in metal-enhanced fluorescence. The as-prepared metallic surfaces were comprised of silver nanostructures and displayed a relatively homogeneous morphology. Atomic force microscopy and UV-visible absorption spectroscopy were used to characterize the growth process of the silver nanostructures on the indium tin oxide (ITO) surfaces. A typical 20-fold enhancement in the intensity of a nearby fluorophore, [Ru(bpy)(3)](2+), could be achieved on the silvered surfaces. In addition, the photostability of [Ru(bpy)(3)](2+) was found to be greatly increased due to the modification of the radiative decay rate of the fluorophore. It is expected that this electrochemical approach to fabricating nanostructured metallic surfaces can be further utilized in enhanced fluorescence-based applications.
Resumo:
In this paper. we demonstrate an clectrochemiluminescence (ECL) enhancement of tris(2,2-bipyridyl)rutheniuin(II) (Ru(bpy)(3)(2+)) by the addition of silver(l) ions. The maximum enhancement factor of about 5 was obtained on a glassy carbon electrode in the absence of co-reactant. The enhancement of ECL intensity was possibly attributed to the unique catalytic activity of Ag+ for reactions between Ru(bpy)(3)(3+) with OR The higher enhancement was observed in phosphate buffer solutions compared with that from borate buffer solutions. This resulted from the fact that formation of nanoparticles with large surface area in the phosphate buffer solution exhibited high catalytic activity. The amount of Ag+, solution pH and working electrode materials played important roles for the ECL enhancement. We also studied the effects of Ag+ on Ru(bpy)(3)(2+)/tripropylamine and Ru(bpy)(3)(2+)/C2O42- ECL systems.
Resumo:
Novel nanocomposite films containing DNA-silver nanohybrids have been successfully fabricated by combined use of the layer-by-layer self-assembly technique and an in situ electrochemical reduction method with the DNA-Ag+ complex as one of the building blocks. UV-vis absorption spectroscopy was employed to monitor the buildup of the multilayer films, which suggested a progressive deposition with almost an equal amount of the DNA-Ag+ complex in each cycle. The following electrochemical reduction of silver resulted in the formation of metal nanoparticles in the film, which was evidenced by the evolution of the intense plasmon absorption band originating from silver. Scanning electron microscopy indicated that the particles formed in the multilayer films possessed good monodispersity and stability, thanks to the surrounding polymers. X-ray photoelectron spectroscopy further confirmed the presence of the main components (such as DNA and metallic silver) of the nanocomposite films. In addition, we show that the size of the metal nanoparticles and the optical property of the film could be readily tuned by manipulating the assembly conditions.
Resumo:
Propylene epoxidation by air was carried out on NaCl-modified silver (NaCl/Ag) catalysts, and the catalysts were characterized by X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). The effects of NaCl loadings, propylene to oxygen ratio, and the reaction time on the catalytic performance were investigated. It was found that the addition of NaCl to silver significantly increases the propylene oxide (PO) selectivity. The PO yield has a maximum when the NaCl loading is about 10 wt.%. Also 12.4% conversion of propylene and 31.6% selectivity to PO are obtained on the NaCl/Ag (10 wt.%) catalyst at 350 degreesC, space velocity 1.8 x 10(4) h(-1) and C3H6:O-2 = 1:2. XPS and XRD characterizations show that AgCl formed on the silver catalyst was favorable to propylene epoxidation. A compound with highly oxidized Ag ion was also found, which may be effective for the reaction. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
Minor yttrium addition can improve the glass-forming ability of Cu-Zr-Al ternary alloys via suppression of the growth of eutectic clusters. Yttrium addition also makes the room temperature ductility of the alloys decrease, and both the compressive strength and elastic strain limits increase slightly.
Resumo:
A kind of novel Ti-based composites was developed by introducing different amounts of carbon element to the Ti-50 Cu-23 Ni-20 Sn-7 bulk metallic glass forming alloys. The thermal stability and microstructural evolution of the composites were investigated. Room temperature compression tests reveal that the composite samples with 1% and 3% (mass fraction) carbon additions have higher fracture strength and obvious plastic strain of 2 195 MPa, 3.1% and 1 913 MPa, 1.3% respectively, compared with those of the corresponding carbon-free Ti-50 Ni-20 Cu-23 Sn-7 alloys. The deformation mechanisms of the composites with improved mechanical properties were also discussed.
Resumo:
The influence of the momentum addition, which may be associated with the average or fluctuation transverse component of the magnetic field or others, on the acceleration the solar wind or stellar wind is studied in a local streamtube. The results show that the larger the momentum addition the stronger the acceleration of the wind. For example, if the typical transverse magnetic field is about 0.1 of the longitudinal field, the velocity of the solar wind at 1 AU may be increased by 40%. The coronal hole may be considered as a streamtube, the presence of a high stream from the coronal hole may be explained by the existence of an average or fluctuation transverse magnetic field in the streamtube. A similar conclusion may be applied to the polar region, where the velocity of the solar wind will be larger than elsewhere as if there is a transverse component of magnetic field, as well as to the stellar wind. The influence of other parameters on the acceleration of the solar wind is also discussed. From the viewpoint of the solar wind mechanism, the present paper shows that the momentum addition in the subsonic flow region can increase the velocity of the solar wind at 1 AU.
Resumo:
The authors report the investigation of filament and supercontinuum generation by focusing a femtosecond laser beam into water doped with silver nanoparticles. The silver nanoparticles enhance the nonlinear optical response of water, leading to broadening of supercontinuum spectra in self-focused femtosecond filaments. During the propagation of the supercontinuum light in the filament, the silver nanoparticles preferentially scatter the short-wavelength light near the plasmon resonant wavelength peak, followed by the scattering of the long-wavelength light. Thus, a side view of the filament shows a full-color spectrum in the visible range, which is herein called "rainbow filament." (c) 2007 American Institute of Physics.