225 resultados para SiC crystal


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Uniform arrays of periodic nanoparticles with 80-nm period are formed on 6H-SiC crystal irradiated by circularly polarized 400-nm femtosecond laser pulses. In order to understand the formation mechanism, the morphology evolvement as a function of laser pulse energy and number is studied. Periodic nanoripples are also formed on the sample surface irradiated by linearly polarized 400-, 510- and 800-nm femtosecond laser pulses. All these results support well the mechanism that second-harmonic generation plays an important role in the formation of periodic nanostructures.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A finite element-based thermoelastic anisotropic stress model for hexagonal silicon carbide polytype is developed for the calculation of thermal stresses in SiC crystals grown by the physical vapor transport method. The composite structure of the growing SiC crystal and graphite lid is considered in the model. The thermal expansion match between the crucible lid and SiC crystal is studied for the first time. The influence of thermal stress on the dislocation density and crystal quality is discussed.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Large size bulk silicon carbide (SiC) crystals are commonly grown by the physical vapor transport (PVT) method. The PVT growth of SiC crystals involves sublimation and condensation, chemical reactions, stoichiometry, mass transport, induced thermal stress, as well as defect and micropipes generation and propagation. The quality and polytype of as-grown SiC crystals are related to the temperature distribution inside the growth chamber during the growth process, it is critical to predict the temperature distribution from the measured temperatures outside the crucible by pyrometers. A radio-frequency induction-heating furnace was used for the growth of large-size SiC crystals by the PVT method in the present study. Modeling and simulation have been used to develop the SiC growth process and to improve the SiC crystal quality. Parameters such as the temperature measured at the top of crucible, temperature measured at the bottom of the crucible, and inert gas pressure are used to control the SiC growth process. By measuring the temperatures at the top and bottom of the crucible, the temperatures inside the crucible were predicted with the help of modeling tool. SiC crystals of 6H polytype were obtained and characterized by the Raman scattering spectroscopy and SEM, and crystals of few millimeter size grown inside the crucible were found without micropipes. Expansion of the crystals were also performed with the help of modeling and simulation.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The damage mechanisms and micromachining of 6H SiC are studied by using femtosecond laser pulses at wavelengths between near infrared (NIR) and near ultraviolet (NUV) delivered from an optical parametric amplifier (OPA). Our experimental results indicate that high quality microstructures can be fabricated in SiC crystals. On the basis of the dependence of the ablated area and the laser pulse energy, the threshold fluence of SiC is found to increase with the incident laser wavelength in the visible region, while it remains almost constant for the NIR laser. For the NIR laser pulses, both photoionization and impact ionization play important roles in electronic excitation, while for visible lasers, photoionization plays a more important role.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

激光诱导周期性纳米微结构在多种材料包括电介质、半导体、金属和聚合物中观察到。研究了800 nm和400 nm飞秒激光垂直聚焦于6H SiC晶体表面制备纳米微结构。实验观察到800 nm和400 nm线偏光照射样品表面分别得到周期为150 nm和80 nm的干涉条纹, 800 nm圆偏振激光单独照射样品表面得到粒径约100 nm的纳米颗粒。偏振相互垂直的800 nm和400 nm激光同时照射晶体得到粒径约100 nm的纳米颗粒阵列, 该纳米阵列的方向随400 nm激光强度增加而向400 nm偏振方向偏转。利

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Modeling of fluid flows in crystal growth processes has become an important research area in theoretical and applied mechanics. Most crystal growth processes involve fluid flows, such as flows in the melt, solution or vapor. Theoretical modeling has played an important role in developing technologies used for growing semiconductor crystals for high performance electronic and optoelectronic devices. The application of devices requires large diameter crystals with a high degree of crystallographic perfection, low defect density and uniform dopant distribution. In this article, the flow models developed in modeling of the crystal growth processes such as Czochralski, ammonothermal and physical vapor transport methods are reviewed. In the Czochralski growth modeling, the flow models for thermocapillary flow, turbulent flow and MHD flow have been developed. In the ammonothermal growth modeling, the buoyancy and porous media flow models have been developed based on a single-domain and continuum approach for the composite fluid-porous layer systems. In the physical vapor transport growth modeling, the Stefan flow model has been proposed based on the flow-kinetics theory for the vapor growth. In addition, perspectives for future studies on crystal growth modeling are proposed. (c) 2008 National Natural Science Foundation of China and Chinese Academy of Sciences. Published by Elsevier Limited and Science in China Press. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Misfit defects in a 3C-SiC/Si (001) interface were investigated using a 200 kV high-resolution electron microscope with a point resolution of 0.194 nm. The [110] high-resolution electron microscopic images that do not directly reflect the crystal structure were transformed into the structure map through image deconvolution. Based on this analysis, four types of misfit dislocations at the 3C-SiC/Si (001) interface were determined. In turn, the strain relaxation mechanism was clarified through the generation of grow-in perfect misfit dislocations (including 90 degrees Lomer dislocations and 60 degrees shuffle dislocations) and 90 partial dislocations associated with stacking faults. (C) 2009 American Institute of Physics. [doi:10.1063/1.3234380]

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The effects of deposition gas pressure and H-2 dilution ratio (H-2/SiH4+CH4+H-2), generally considered two of dominant parameters determining crystallinity in beta-SiC thin films prepared by catalytic chemical vapor deposition (Cat-CVD), often called hot-wire CVD method, on the films properties have been systematically studied. As deposition gas pressure increase from 40 to 1000 Pa, the crystallinity of the films is improved. From the study of H-2 dilution ratio, it is considered that H-2 plays a role as etching gas and modulating the phases in beta-SiC thin films. On the basis of the study on the parameters, nanocrystalline beta-SiC films were successfully synthesized on Si substrate at a low temperature of 300degreesC. The Fourier Transform Infrared Spectroscopy (FTIR) and X-ray diffraction (XRD) spectra show formation of beta-SiC. Moreover, according to Sherrer equation, the average grain size of the films estimated is in nanometer-size. (C) 2003 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

GaN nanotip triangle pyramids were synthesized on 3C-SiC epilayer via an isoelectronic In-doping technique. The synthesis was carried out in a specially designed two-hot-boat chemical vapor deposition system. In (99.999%) and molten Ga (99.99%) with a mass ratio of about 1:4 were used as the source, and pieces of Si (111) wafer covered with 400-500 nm 3C-SiC epilayer were used as the substrates. The products were analyzed by x-ray diffraction, field emission scanning electron microscopy, high-resolution transmission electron microscopy, selected area electron diffraction, Raman spectroscopy, and photoluminescence measurements. Our results show that the as-synthesized GaN pyramids are perfect single crystal with wurtzite structure, which may have potential applications in electronic/photonic devices.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The defects in 3C-SiC film grown on (001) plane of Si substrate were studied using a 200 kV high-resolution electron microscope with point resolution of 0.2 nm. A posterior image processing technique, the image deconvolution, was utilized in combination with the image contrast analysis to distinguish atoms of Si from C distant from each other by 0.109 nm in the [110] projected image. The principle of the image processing technique utilized and the related image contrast theory is briefly presented. The procedures of transforming an experimental image that does not reflect the crystal structure intuitively into the structure map and of identifying Si and C atoms from the map are described. The atomic configurations for a 30 degrees partial dislocation and a microtwin have been derived at atomic level. It has been determined that the 30 degrees partial dislocation terminates in C atom and the segment of microtwin is sandwiched between two 180 degrees rotation twins. The corresponding stacking sequences are derived and atomic models are constructed according to the restored structure maps for both the 30 degrees partial dislocation and microtwin. Images were simulated based on the two models to affirm the above-mentioned results.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Enhancement of the electrical properties in an AlGaN/GaN high electron mobility transistor (HEMT) structures was demonstrated by employing the combination of a high mobility GaN channel layer and an AlN interlayer. The structures were grown on 50 mm semi-insulating (SI) 6H-SiC substrates by metalorganic chemical vapor deposition (MOCVD). The room temperature (RT) two-dimensional electron gas (2DEG) mobility was as high as 2215 cm(2)/V s, with a 2DEG concentration of 1.044 x 10(13)cm(-2). The 50 mm HEMT wafer exhibited a low average sheet resistance of 251.0 Omega/square, with a resistance uniformity of 2.02%. The 0.35 Pin gate length HEMT devices based on this material structure, exhibited a maximum drain current density of 1300 mA/mm, a maximum extrinsic transconductance of 314 mS/mm, a current gain cut-off frequency of 28 GHz and a maximum oscillation frequency of 60 GHz. The maximum output power density of 4.10 W/mm was achieved at 8 GHz, with a power gain of 6.13 dB and a power added efficiency (PAE) of 33.6%. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The hydrogen-implanted Si substrate has been used for the fabrication of the "compliant substrate", which can accommodate the mismatch strain during the heteroepitaxy. The compliance of the substrate can be modulated by the energy and dose of implanted hydrogen. In addition, the defects caused by implantation act as the gettering center for the internal gettering of the harmful metallic impurities. Compared with SiC films growth on substrate without implantation. all the measurements indicated that the mismatch strains in the SiC films grown on this substrate have been released and the crystalline qualities have been improved. It is a practical technique used for the compliant substrate fabrication and compatible with the semiconductor industry. (C) 2003 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The growth of SiC epilayers on C-face (0 0 0 1) sapphire (alpha-Al2O3) has been performed using CVD method. We found that the quality of SiC epilayers has been improved through the nitridation of substrates by exposing them to ammonia ambient, as compared to growth on bare sapphire substrates. The single crystallinity of these layers was verified by XRD and double crystal XRD measurements. Atomic force microscopy was used to evaluate the surface morphology. Infrared reflectivity and Raman scattering measurement were carried out to investigate the phonon modes in the grown SiC. Detailed Raman analysis identified the 6H nature of the as-grown SiC films. (C) 2002 Elsevier Science B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Silicon carbide (SiC) is recently receiving increased attention due to its unique electrical and thermal properties. It has been regarded as the most appropriate semiconductor material for high power, high frequency, high temperature, and radiation hard microelectronic devices. The fabrication processes and characterization of basic device on 6H-SiC were systematically studied. The main works are summarized as follows:The homoepitaxial growth on the commercially available single-crystal 6H-SiC wafers was performed in a modified gas source molecular beam epitaxy system. The mesa structured p(+)n junction diodes on the material were fabricated and characterized. The diodes showed a high breakdown voltage of 800 V at room temperature. They operated with good rectification characteristics from room temperature to 673 K.Using thermal evaporation, Ti/6H-SiC Schottky barrier diodes were fabricated. They showed good rectification characteristics from room temperature to 473 K. Using neon implantation to form the edge termination, the breakdown voltage was improved to be 800 V.n-Type 6H-SiC MOS capacitors were fabricated and characterized. Under the same growing conditions, the quality of polysilicon gate capacitors was better than Al. In addition, SiC MOS capacitors had good tolerance to gamma rays. (C) 2002 Published by Elsevier Science B.V.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Microtwins in the 3C-SiC films grown on Si(0 0 1) by atmosphere pressure chemical vapor deposition (APCVD) were investigated in detail using X-ray four-circle diffractometry. The Phi scan shows that 3C-SiC films can grow on Si substrates epitaxially and epitaxial relationship is revealed as (0 0 1)(3C) (SiC)parallel to (0 0 1)(Si),[1 1 1](3C-SiC)parallel to [1 1 1](Si). Other diffraction peaks at about 15.8 degrees in x emerged in the pole figures of the (I 1 1) 3C-SiC. We performed the pole figure of (1 0 (1) over bar 0)h-SiC and the reciprocal space mapping from the (1 1 1) reciprocal lattice point of base SiC to the (0 0 2) point of microtwin for the first time, indicating that the diffraction peaks at 15.8 degrees in x result from not hexagonal SiC but microtwins of 3C-SiC, and twin inclusions are estimated to be around 1%. (C) 2001 Published by Elsevier Science B.V.