22 resultados para Shrimp fisheries
Resumo:
Penaeus monodon postlarvae were fed with different percentages (0%, 25%, 50%, 75% and 100%) of the herbal appetizer Zingiber officinalis enriched Artemia. After 30 days of culture (i.e. PL-1-30), a very positive result was found in Z. officinalis-enriched Artemia-fed postlarvae. The unenriched Artemia-fed postlarvae consumed 91.0 mg/animal/30 days of feed, whereas the Z. officinalis-enriched Artemia increased their consumption to 127.9 mg/animal/30 days. A similar pattern was noticed in feed absorbed (110.2 mg), dry weight growth (26.7 mg) and feed catabolized (83.2 mg) in Z. officinalis-enriched Artemia because of enzymatic activities. The conversion efficiency of unenriched postlarva was 17.19%, whereas in 100% Z. officinalis-enriched Artemia, the maximum conversion efficiency was 20.85%. The net production efficiency increased significantly (P < 0.05) to 22% from that of the unenriched Artemia-fed postlarvae. The administration of Z. officinalis in all levels produced significantly (P < 0.05) higher weight gain and specific growth rate. The utilization efficiency of feed increased proportionately to the percentages of Z. officinalis. Digestive enzyme activity (amylase, protease and lipase) increased significantly (P < 0.05) in the 50%, 75% and 100% enrichment. Among the different percentages of enrichment, the 100% Z. officinalis-enriched Artemia-fed postlarvae performed better in the overall status.
Resumo:
Immunostimulants are the substances, which enhance the non-specific defence mechanism and provide resistance against the invading pathogenic micro-organism. In order to increase the immunity of shrimps against the WSSV, the methanolic extracts of five different herbal medicinal plants like Cyanodon dactylon, Aegle marmelos, Tinospora cordifolia, Picrorhiza kurooa and Eclipta alba were selected and mixed thoroughly in equal proportion. The mixed extract was supplemented with various concentrations viz. 100 (A), 200 (B), 400 (C), and 800 (D) mg kg(-1) through artificial diets individually. The prepared diets (A-D) were fed individually to WSSV free healthy shrimp Penaeus monodon with an average weight of 8.0 +/- 0.5 g for 25 days. Control diet (E), devoid of herbal extract was also fed to shrimps simultaneously. After 25 days of feeding experiment, the shrimps were challenged with WSSV, which were isolated and propagated from the infected crustaceans. The shrimps succumbed to death within 7 days when fed on no herbal immunostimulant diet (E). Among the different concentrations of herbal immunostimulant supplemented diets, the shrimps fed on diet D (800 mg kg(-1)) significantly (P < 0.0001) had more survival (74%) and reduction in the viral load. Also the better performance of haematological, biochemical and immunological parameters was found in the immunostimulant incorporated diets fed shrimps. The present work revealed that the application of herbal immunostimulants will be effective against shrimp viral pathogenesis and they can be recommended for shrimp culture. (c) 2006 Published by Elsevier Ltd.
Resumo:
Both MI and MII triploids were successfully produced by heat shock in Chinese shrimp Fenneropenaeus chinensis. The inducing conditions for MI and MII triploids were optimized. The highest inducing rate obtained for MI triploids reached more than 90%, and that for MII triploids reached nearly 100% at the nauplius stage as evaluated using flow cytometry. Comparisons of survival rates at larval stages between triploids and diploids or diploids experiencing treatment and diploids without treatment were performed. At larval stage from nauplii to postlarvae, heat shocks lowered survival at larval stages even if the ploidy was not changed. Ploidy did not affect shrimp larvae survival, and no significant difference was found in the survival of shrimp larvae between MI and MII triploids. Highly significant differences were observed in the morphology of triploids and diploids, and no apparent difference was found in the morphology of MI and MII triploids at the grow-out stages. Discriminating formulae for triploid and diploid shrimp at grow-out stage were developed and could be used to distinguish triploids from diploids based on morphological parameters. MI and MII triploids of shrimp have the potential to be used in aquaculture.
Resumo:
Three members of the tetraspanin/TM4SF superfamily were cloned from Chinese shrimp, Fenneropenaeus chinensis. The deduced amino acid sequences of the three proteins have typical motifs of the tetraspanin/TM4SF superfamily. Phylogenetic analysis of the proteins, together with the known tetraspanins of invertebrates and vertebrates, revealed that they belong to different tetraspanin subfamilies: CD9, CD63 and tetraspanin-3. The three cloned genes of CD9, CD63 and tetraspanin-3 showed apparently different tissue distributions. The CD9 gene (FcCD9) was specifically expressed in the hepatopancreas. While for the CD63 gene (FcCD63), the highest expression was detected in nerves, epidermis and heart, with low expression in haemocytes, ovary, gill, hepatopancreas and stomach and no expression in intestine, muscle and lymphoid organ. Compared with FcCD9 and FcCD63, the tetraspanin-3 gene (FcTetraspanin-3) was more broadly expressed and its highest expression was detected in the intestine. Its expression in nerves was lower than in the intestine, but was higher than in other tissues. Expression in haemocytes, ovary and muscle was much lower than in other tissues. The expression profiles of FcCD9, FcCD63 and FcTetraspanin-3 in different tissues, including haemocytes, lymphoid organ and hepatopancreas, were compared by real-time PCR when shrimp were challenged by live white spot syndrome virus (WSSV) and heat-inactivated WSSV. All three tetraspanins were markedly up-regulated in the live WSSV-challenged shrimp tissues. The data suggested that the three cloned members of TM4SF superfamily in Chinese shrimp may play a key role in the route of WSSV infection.
Resumo:
This study aimed at evaluating the ploidy effects on growth performances of Chinese shrimp (Fenneropenaeus chinensis Osbeck, 1765) reared in different salinities under laboratory conditions. In the acute salinity experiment, there was no difference (P > 0.05) in tolerance observed in triploid and diploid shrimp due to abrupt salinity changes. The lethal salinity for 50% of the individuals in 96 h at 23-25 degrees C was about 2 g L-1 in both triploids and diploids. While for the chronic salinity experiment, statistical analyses confirmed that the differences in growth performances including the specific growth rate (SGR), the feeding rate (FR), feed conversion efficiency (FCE) and intermoult period (IP) between triploid and diploid were related to salinity. Diploid shrimp reared in 20 g L-1 exhibited highest SGR (P < 0.05), while triploids performed well in 20 and 30 g L-1 salinities (P < 0.05). Based on the survival and growth data, the optimal salinity for the culture of diploid F. chinensis should be 20 g L-1 and for triploids it should be between 20 and 30 g L-1.
Resumo:
Arthropod defence responses (e.g. prophenoloxidase (proPO) activation and Toll pathway initiation) are mediated by serine proteinase cascades and regulated by serpins in haemolymph. A serpin (Fc-serpin) cDNA was cloned from the haemocytes of Fenneropenaeus chinensis by rapid amplification of cDNA ends (RACE) PCR and haemocyte cDNA library screening. The full-length cDNA consists of 1734 bp, encoding 411 amino acids with a calculated molecular mass of 46.55 kDa and a theoretical isoelectric point of 7.70. Fc-serpin contains a typical serpin-like homologue (serine proteinase inhibitors domain). The deduced protein contains a putative signal peptide of 19 amino acids and the serpin's signature sequence ((FHCNRPFLFLI389)-F-379). Fc-serpin showed some identity with Pacifastacus leniusculus serpin (42%) and Manduca sexta serpin-6 (34%). The reactive centre loop (RCL) sequences of Fc-serpin, P leniusculus serpin, M. sexta serpin-6 and Bombyx mori serpin-2 are highly similar. An Arg at the PI position of the reactive site indicates that Fc-serpin may have inhibitory activity against prophenoloxidase activating proteinase (PAP) and clotting enzyme. Transcripts of Fc-serpin mRNA were mainly detected in haemocytes and the lymphoid organ by RT-PCR. The variation of the mRNA transcription level in haemocytes followed by artificial infection with bacteria OF white spot syndrome virus (WSSV) was quantified by SYBR Green real-time PCR analysis. Expression profiles of Fc-serpin greatly fluctuated after challenge. This work represents the first report Of a serpin in penaeid shrimp. The data provide clues that Fc-serpin might play potential roles in the innate immunity of shrimp. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
In invertebrates, C-type lectins play crucial roles in innate immunity responses by mediating the recognition of host cells to pathogens and clearing microinvaders, which interact with carbohydrates and function as pattern recognition receptors (PRRs). A novel C-type lectin gene (LvLec) cDNA was cloned from hemocytes of Litopenaeus vannamei by expressed sequence tag (EST) and rapid amplification of cDNA ends (RACE) PCR. The full-length cDNA of LvLec was of 618 bp, consisting of a 5'-terminal untranslated region (UTR) of 60 bp and a 3'-UTR of 87 bp with a poly (A) tail. The deduced amino acid sequence of LvLec possessed all conserved features critical for the fundamental structure, such as the four cysteine residues (Cys(53), Cys(128), Cys(144), Cys(152)) involved in the formation of disulfides bridges and the potential Ca2+/carbohydrate-binding sites. The high similarity and the close phylogenetic relationship of LvLec shared with C-type lectins from vertebrates and invertebrates. The structural features of LvLec indicated that it was an invertebrate counterpart of the C-type lectin family. The cDNA fragment encoding the mature peptide of LvLec was recombined and expressed in Escherichia coli BL21(DE3)-pLysS. The recombinant protein (rLvLec) could agglutinate bacteria E. coli JM109 depending on Ca2+, and the agglutination could be inhibited by mannose and EDTA. These results indicated that LvLec was a new member of C-type lectin family and involved in the immune defence response to Gram negative bacteria in Litopenaeus vannamei. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
White spot syndrome virus (WSSV) is a major shrimp pathogen that has a widespread negative affect on shrimp production in Asia and the Americas. It is known that WSSV infects shrimp cells through viral attachment proteins (VAP) that bind with shrimp cell receptors. However, the identity of both WSSV VAP and shrimp cell receptors remains unclear. We used digoxigenin (DIG)labeled shrimp hemocyte and gill cell membranes to bind to WSSV proteins immobilized on nitrocellulose membranes, and 4 putative WSSV VAP (37 kDa, 39 kDa and 2 above 97 kDa) were identified. Mass spectrometric analysis identified the 37 kDa putative VAP as the product of WSSV gene VP281.
Resumo:
Arginine kinase (AK) was previously reported as a phosphagen-ATP phosphotransferase found in invertebrates. In this study, an 1184 bp cDNA was cloned and sequenced. It contained an open reading frame of 1068 bp that coded for 356 deduced amino acids of AK in Fenneropenaeus chinensis. The calculated molecular mass of AK is 40129.73 Da and pI is 5.92. The predicted protein showed a high level of identity to known AK in invertebrates and creatine kinase from vertebrates, which belong to a conserved family of ATP:guanidino phospho-transferases. In addition, AK protein in plasma of F. chinensis was identified using two-dimensional electrophoresis (2DE) and electrospray ionization mass spectrometry (ESI-MS) according to the calculated molecular mass and pI. AK was significantly decreased in the plasma of F. chinensis at 45 min and recovered at 3 It after laminarin injection as confirmed by 2DE and ESI-MS. The results showed that AK was one of the most significantly changed proteins on two-dimensional gel in the plasma proteins of F. chinensis at 45 min and 3 It after simulation. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
A new member of antimicrobial peptide genes of the penaeidin family, Ch-penaeidin, has been cloned from the haemocytes of Chinese shrimp, Fenneropenaeus chinensis, by reverse transcription PCR (RT-PCR), 3'-rapid amplification of cDNA end (3'-RACE) and smart cDNA methods. The Ch-penaeidin cDNA was 655 bp and the open reading frame of the cDNA encoded a 71 amino acid peptide. Ch-penaeidin contained a putative NH2-terminal signal Sequence (1-19) followed by a mature peptide (20-71). The sequence identify with other penaeidins from Litopenaeus vannamei and Litopenaeus setiferus is between 48% and 71%. The signal sequence of Ch-penaeidin is almost completely identical to that of other penaeidins, while differing relatively in the N-terminal domain of the mature peptide. Ch-penaeidin was designated as a novel member of class penaeidin 3 according to phylogenetic analysis. The Mature peptide. with a predicted molecular weight of 5589.32 Da, and a pI of 9.77, has eight positively charged amino acids and no negatively charged amino acids. The expression and distribution of Ch-penaeidin in Unchallenged shrimps were studied by RT-PCR, Northern blot and in situ hybridisation. The results showed that the Ch-penaeidin transcripts were detected in haemocytes (granular haemocytes), heart, gill, intestine, and subcuticular epithelia of the shrimp. and that Ch-penaeidin was constitutively expressed mainly in haemocytes. (C) 2003 Elsevier Ltd. All rights reserved.
Resumo:
Superoxide dismutase (SOD; EC 1.15.1.1) is an enzyme that protects against oxidative stress from superoxide radicals in living cells. This enzyme had been isolated, purified and partially characterized from muscle tissue of the shrimp Macrobrachium nipponense. The purification was achieved by heat treatment, ammonium sulfate fractionated precipitation and column chromatograph on DEAE-cellulose 32. Some physiological and biochemical characterization of it was tested. The molecular weight of it was about 21.7 kDa, as judged by SDS-polyacrylamide gel electrophoresis. The purified enzyme had an absorption peak of 278 nm in ultraviolet region, and the enzyme remained stable at 25-45 degreesC within 90 min. However, it was rapidly inactivated at higher temperature. Treatment of the enzyme with 1 mM ZnCl2, SDS and 1 mM or 10 mM mercaptoethanol showed some increasing activity. However, the enzyme activity was obviously inhibited by 10 mM CaCl2, CuSO4, ZnCl2 and 1 mM CaCl2 and 10 mM K2Cr2O7. SOD activity did not show significantly variation after incubated with 1 mM CaCl2, EDTA and 10 MM SDS. The enzyme was insensitive to cyanide and contained 1.03 +/- 0.14 atoms of manganese per subunit shown in atomic absorption spectroscopy, which revealed that purified SOD was Mn superoxide dismutase. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Chromosome manipulation for commercially valuable marine animals plays an important role in aquaculture. The special reproductive characteristics of shrimp make it difficult to control fertilization and synchronize egg development, so research on chromosome manipulation in shrimp has proceeded very slowly. In the present study, triploid shrimp Fenneropenaeus chinensis were induced by heat shocks and the optimal-inducing condition was screened at different spawning temperatures. Level of triploid induction for each treatment was evaluated by flow cytometry at nauplius stage. The highest level of triploid induction reached to more than 90%. Starting time for each treatment was very crucial for triploid induction in shrimp. One optimal treatment condition for triploid induction was heat shock (29-32 degreesC), starting at 18-20 min for duration of 10 min. These conditions varied depending on the temperature at spawning. Triploid level at embryo stage and nauplius stage was not different, suggesting the same hatching rate between diploids and triploids. Heat shock is a very effective way to induce triploids in this species, and can be easily used on large scale without any harmful effect on the environment as compared with chemical treatment. (C) 2003 Elsevier Science B.V. All rights reserved.
Resumo:
White spot syndrome virus (WSSV) was specifically detected by PCR in Penaeus merguiensis hemocytes, hemolymph and plasma. This suggested a close association between the shrimp hemolymph and the virus. Three types of hemocyte from shrimp were isolated using flow cytometry. Dynamic changes of the hemocyte subpopulations in P. merguiensis at different times after infection were observed, indicating that the WSSV infection selectively affected specific subpopulations. Immunofluorescence assay (IFA) and a Wright-Giemsa double staining study of hemocyte types further confirmed the cellular localization of the virus in the infected hemocytes. Electron microscopy revealed virus particles in both vacuoles and the nucleus of the semigranular cells (SGC), as well as in the vacuoles of the granular cells (GC). However, no virus could be detected in the hyaline cells (HC). Our results suggest that the virus infects 2 types of shrimp hemocytes-GCs and SGCs. The SGC type contains higher virus loads and exhibits faster infection rates, and is apparently more susceptible to WSSV infection.
Resumo:
Transglutaminase can catalyze the cross-linking reaction between soluble clotting protein molecules from the plasma for prevention of excess blood loss from a wound and obstructing micro-organisms from invading the wound in crustaceans. A novel transglutaminase (FcTG) gene was cloned from hemocytes of Chinese shrimp Fenneropenaeus chinensis by 3' and 5' rapid amplification of cDNA ends (RACE) PCR. The full-length cDNA consists of 2972 bp, encoding 757 amino acids with a calculated molecular mass of 84.96 kDa and a theoretical isoelectric point of 5.61. FcTG contains a typical transglutaminase-like homologue (TGc domain: E-value = 1.94e-38). Three catalytic sites (Cys-324, His-391 and Asp-414) are present in this domain. The deduced amino acid sequence of FcTG showed high identity with black tiger shrimp TG, kuruma shrimp TG and crayfish TG. Transcripts of FcTG mRNA were mainly detected in gill, lymphoid organ and hemocytes by RT-PCR. RNA in situ hybridization further confirmed that FcTG was constitutively expressed in hemocytes both in the circulatory system and lymphoid organ. The variation of mRNA transcription level in hemocytes and lymphoid organ following injection of killed bacteria or infection with white spot syndrome virus (WSSV) was quantified by RT-PCR. The up-regulated expression of FcTG in shrimp lymphoid organ following injection of bacteria indicates that it is inducible and might be associated with bacterial challenge. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
RNA interference (RNAi) is an evolutionarily conserved mechanism by which double-stranded RNA (dsRNA) initiates post-transcriptional silencing of homologous genes. Here we report the amplification and characterisation of a full length cDNA from black tiger shrimp (Penaeus monodon) that encodes the bidentate RNAase III Dicer, a key component of the RNAi pathway. The full length of the shrimp Dicer (Pm Dcr1) cDNA is 7629 bp in length, including a 51 untranslated region (UTR) of 130 bp, a 3' UTR of 77 bp, and an open reading frame of 7422 bp encoding a polypeptide of 2473 amino acids with an estimated molecular mass of 277.895 kDa and a predicted isoelectric point of 4.86. Analysis of the deduced amino acid sequence indicated that the mature peptide contains all the seven recognised functional domains and is most similar to the mosquito (Aedes aegypti) Dicer-1 sequence with a similarity of 34.6%. Quantitative RT-PCR analysis showed that Pm Dcr1 mRNA is most highly expressed in haemolymph and lymphoid organ tissues (P 0.05). However, there was no correlation between Pm Dcr1 mRNA levels in lymphoid organ and the viral genetic loads in shrimp naturally infected with gill-associated virus (GAV) and Mourilyan virus (P > 0.05). Treatment with synthetic dsRNA corresponding to Pm Dcr1 sequence resulted in knock-down of Pm Dcr1 mRNA expression in both uninfected shrimp and shrimp infected experimentally with GAV. Knock-down of Pm Dcr1 expression resulted in more rapid mortalities and higher viral loads. These data demonstrated that Dicer is involved in antiviral defence in shrimp. (c) 2007 Elsevier Ltd. All rights reserved.