22 resultados para Scenedesmus almeriensis
Resumo:
以被甲栅藻(Scenedesmusarmatus)为材料研究极高浓度CO2对其生理活性和细胞结构的影响。研究表明,被甲栅藻能在60%的CO2浓度下快速生长,在5%、20%、40%、60%、80%、100%CO2浓度下的平均增长率分别是1.228、0.925、0.741、0.305、0.042、0.001g·L-1·d-1DW。通入极高浓度CO2(20%、40%)后,被甲栅藻细胞的光系统II(PSII)最大光化学效率(Fv/Fm)在24h内明显下降,对PSII抑制作用较明显;其后,随培养时间的增长而逐渐恢复
Resumo:
<正> 一、引言据报导,低等生物对电离輻射的敏感性是很低的。在太平洋原子弹爆炸后,对海藻的調查,发現这些低等植物仍然非常繁茂,而且很少有异常現象。是否所有藻类均有这情况,到目前为丘,仅有波恩哈姆(K.Bonham)和帕兰姆博(R.Palumbo),哥德沃德(M.B.E.Gordward),基勒(M.M.R.Gilet)和奥贊德(P.Ozenda)以及方宗熙等为数不多的报告。
Resumo:
The biosynthesis and metabolism of astaxanthin in coenobium alga Scenedesmus obliquus were investigated using a two-stage culture. The first stage was for the analysis of biosynthesis and accumulation of astaxanthin in alga cells which were cultured under induction conditions (incubation at 30 degrees C and illumination of 180 mu mol m(-2) s(-1)) for 48 h. The composition of the secondary carotenoids in algal cells was analyzed and seven ketocarotenoids were identified. The results implied that S. obliquus synthesized astaxanthin from beta-carotene through three possible pathways. In the second stage, the cultures were transferred to normal conditions (incubation at 25 C and illumination of 80 mu mol m(-2) s(-1)) for 72 h. Algal cells accumulated more chlorophyll and biosynthesis of secondary carotenoids terminated, the content of secondary carotenoids decreased from 59.48 to 6.57%. The results inferred that accumulation and metabolism of astaxanthin could be controlled by cultivated conditions which also could lead the mobilization of secondary carotenoids to support the algal cell growth. The results also implied that presumed conversions from astaxanthin to lutein or antheraxanthin could be modulated by culturing conditions. (C) 2008 Published by Elsevier Ltd.
Resumo:
The allelopathic effects of two submerged macrophytes, Najas minor and Potamogeton malaianus, on growth, photosynthesis and antioxidant systems of Scenedesmus obliquus were assessed in coexistence experiments. The growth of S. obliquus was significantly suppressed by the two macrophytes. Moreover, P. malaianus showed the stronger growth inhibition effect on S. obliquus than N. minor. P. malaianus obviously inhibited the photosynthetic rate of S. obliquus, while N. minor had no inhibitory effect. Lipid peroxidation and three antioxidant enzymes activities (superoxide dismutase (SOD), catalase (CAT) and peroxidase (POD)) of S. obliquus were investigated at the end of the co-cultures. The two macrophytes significantly enhanced the malondialdehyde (MDA) content, a product of lipid peroxidation, in S. obliquus. Activities of the three antioxidant enzymes of S. obliquus were simultaneously stimulated in P. malaianus treatment, while no significant variation of POD activity was observed in N. minor treatment. The results indicated that the two macrophytes N. minor and P. malaianus had significant allelopathic effects on S. obliquus. However, the two macrophytes influenced S. obliquus in different ways.
Resumo:
The dynamics of planktonic cyanobacteria in eutrophicated freshwaters play an important role in formation of annual summer blooms, yet overwintering mechanisms of these water bloom forming cyanobacteria remain unknown. The responses to darkness and low temperature of three strains (unicellular Microcystis aeruginosa FACHB-905, colonial M. aeruginosa FACHB-938, and a green alga Scenedesmus quadricauda FACHB-45) were investigated in the present study. After a 30-day incubation under darkness and low temperature, cell morphology, cell numbers, chlorophyll a, photosynthetic activity (ETRmax and I-k), and malodialdehyde (MDA) content exhibited significant changes in Scenedesmus. In contrast, Microcystis aeruginosa cells did not change markedly in morphology, chlorophyll a, photosynthetic activity, and MDA content. The stress caused by low temperature and darkness resulted in an increase of the antioxidative enzyme-catalase (CAT) in all three strains. When the three strains re-grew under routine cultivated condition subjected to darkness and low temperature, specific growth rate of Scenedesmus was lower than that of Microcystis. Flow cytometry (FCM) examination indicated that two distinct types of metabolic response to darkness and low temperature existed in the three strains. The results from the present study reveal that the cyanobacterium Microcystis, especially colonial Microcystis, has greater endurance and adaptation ability to the stress of darkness and low temperature than the green alga Scenedesmus.
Resumo:
Allelopathic effects of the submerged macrophyte Potamogeton malaianus on Scenedesmus obliquus were assessed using a twophase approach under controlled laboratory conditions. In the co- culture experiment ( phase I), the growth of S. obliquus at two different initial cell densities was significantly inhibited by P. malaianus. Moreover, the growth inhibition was dependent on the biomass density of P. malaianus. Antioxidant enzymes ( SOD, CAT and POD), MDA, APA, total soluble protein, protein electrophoretic pattern and morphology of S. obliquus were determined after the coculture experiment was terminated. The activities of SOD, CAT, POD and APA at the low initial cell density were stimulated, the contents of MDA and total soluble protein were increased, and some special protein bands disappeared in P. malaianus treatments. The macrophyte had no effect on the activities of SOD and APA at the high initial cell density, but significantly influenced other physiological parameters of S. obliquus with the increase of biomass density. The morphology of S. obliquus showed no difference in the macrophyte treatments and the controls, and the cultures were dominated by 4- celled coenobia. The results indicated P. malaianus had significant allelopathic effects on the growth and physiological processes of S. obliquus. Moreover, the allelopathic effects depended on initial algal cell density, biomass density of the macrophyte, and their interaction. In the experiment of P. malaianus culture filtrates ( phase II), filtrates from combined culture of plant and S. obliquus at the low initial cell density exhibited no apparent growth inhibitory effect on S. obliquus. The result showed that initial addition of growth- inhibiting plant filtrates had no allelopathic effect on S. obliquus. We concluded that the allelopathic effects on S. obliquus were found in the presence of P. malaianus, but not in P. malaianus filtrates. However, the absence of allelopathic effect on S. obliquus might be due to the very low concentrations of allelochemicals in the filtrates.
Resumo:
We evaluated the toxic effect of Microcystis aeruginosa on Daphnia carinata King using survival rate, population growth rate, and body length. When fed Microcystis aerugionsa PCC7820 and liberated colonial Microcystis spp., all D. carinata died within five days. When fed a mixture of M. aeruginosa PCC7820 and the green alga Scenedesmus obliquus, the survival rate, population growth rate, and body length of D. carinata generally increased. The survival rates were all above 80% after ten days. However, with liberated colonial M. aeruginosa, the toxic effect on D. carinata was more pronounced, and only at higher concentration of S. obliquus did that toxic effect abate. Our results indicated that green algae could greatly weaken the toxic effect of cyanobacteria.
Resumo:
Cypermethrin is a synthetic pyrethroid that is particularly toxic to crustaceans. It is therefore applied as a chemotherapeutant in farms for the treatment of pests. The effective concentrations of cypermethrin on the inhibition of Scenedesmus ohliquus growth at 96h (96h EC50) were determined to be 50, 100, 150, 200, and 250mg/L. Algal growth, pigment fractions, and the activity of superoxide dismutase (SOD) in the algal cells were measured in the exponential phase after exposure to cypermethrin. The results show that higher concentration of cypermethrin is inhibitory for growth and other metabolic activities and the 96h EC50 of cypermethrin to S. ohliquus is 112 +/- 9 mg/L; the potential application of SOD activity in S. ohliquus as a sensitive biomarker for cypermethrin exposure is also discussed. (C) 2004 Elsevier Inc. All rights reserved.
Resumo:
In order to investigate the possible impacts of increased atmospheric CO2 levels on algal growth and photosynthesis, the influence of CO2 concentration was tested on three planktonic algae (Chlamydomonas reinhardtii, Chlorella pyrenoidosa, and Scenedesmus obliquus). Increased CO2 concentration enhanced significantly the growth rate of all three species. Specific growth rates reached maximal values at 30, 100, and 60 muM CO2 in C. reinhardtii, C pyrenoidosa, and S. obliquus, respectively. Such significant enhancement of growth rate with enriched CO2 was also confirmed at different levels of inorganic N and P, being more profound at limiting levels of N in C pyrenoidosa and P in S. obliquus. The maximal rates of net photosynthesis, photosynthetic efficiency and light-saturating point increased significantly (p<0.05) in high-CO2-grown cells. Elevation of the CO2 levels in cultures enhanced the photoinhibition of C. reinhardtii, but reduced that of C pyrenoidosa and S. obliquus when exposed to high photon flux density. The photo-inhibited cells recovered to some extent (from 71% to 99%) when placed under dim light or in darkness, with better recovery in high-CO2-grown C. pyrenoidosa and S. obliquus. Although pH and pCO(2) effects cannot be distinguished from this study, it can be concluded that increased CO2 concentrations with decreased pH could affect the growth rate and photosynthetic physiology of C. reinhardtii, C. pyrenoidosa, and S. obliquus.
Resumo:
The effect of potassium dichromate in concentrations of 0.5 to 10 mg/l on a laboratory culture of Sc. quadricauda algae was studied in standard conditions. The total cell numbers decreased at potassium dichromate concentrations over 1 mg/l, and the proportion of living cells decreased at all studied concentrations. A positive correlation was found between changes in cell size and their numbers at toxin concentrations of 1 and 3 mg/l, and a negative correlation was found between the relative size and the cell numbers at 3 and 10 mg/l. This may be due to different intensity of growth inhibition and cell division under the influence of the toxin. The culture sensitivity to the toxin increased in autumn and decreased in the spring.
Resumo:
The bioaccumulation, elimination and degradation of C-14-labelled diflubenzuron (DFB) and of 1-(2-chlorobenzoyl)-3-(4-chlorophenyl)urea (CCU) was studied in a laboratory algae culture system of scenedesmus subspicatus. Algae were exposed at an initial concentration of 200 mug/l for seven days. Neither substance had an inhibitory effect on the growth of algae. The half life of DFB and CCU was 3 and 1 days, respectively, as measured by HPLC. The distribution of C-14 between medium and algae was measured. In the case of DFB radioactivity in algae increased steadily and levelled off at approximately 60 % after 5 days. Due to algae growth BCF values decreased from 4310 to 889 for DFB and from 6719 to 304 for CCU during the exposure period. The relationship between algae density and bioconcentration could be correlated by an adsorption isotherm. Elimination of both compounds was rapid during the first hours.
Resumo:
分析了斜生栅藻(Scenedesmus obliquus)在光温(30℃,180μmol/m2·s)胁迫条件下积累虾青素的过程,观察了该过程中细胞形态及细胞光合生理的变化。胁迫条件下,细胞在48h内生成并积累了包括海胆酮、角黄素、金盏花黄素和金盏花红素在内的多种次生类胡萝卜素,并合成了虾青素及其酯。该过程中,细胞形态由两端尖细变得不规则、膨大,原来由4、8个细胞组成的定形群体变为游离的单个细胞或2个细胞组成的群体。藻细胞光合速率在24h内先下降后上升,而后又呈现下降趋势,从34.29μmolO2/mg C
Resumo:
采用放养了斑点叉尾鮰苗种和少量白鲢的人工湿地-池塘复合养殖系统研究各养殖塘浮游藻类的生态特征,并通过对不同密度养殖塘的比较探讨人工湿地对鱼塘中浮游藻类生态结构的调节作用。结果表明,塘中共鉴定出浮游藻类7门63属142种,其中绿藻门34属60种,硅藻和蓝藻分别有10属34种、10属30种,裸、隐、甲、金藻门种类较少,共9属18种。各养殖塘优势种类主要为四尾栅藻(Scenedesmus quadricauda)、衣藻(Chlamydomonas sp.)、二角盘星藻(Pediastrum duplex)、小环
Resumo:
在东湖湖水样品中添加排入东湖的主要污水或营养物(氮和磷)进行藻类测试,观察它们对斜生橱藻(Scenedesmus obliquus)的生长促进作用.生长反应与添加的污水浓度成正比,其SC_(20)(促进20%增长的浓度)为0.5—4%.单独添加氮或磷,在高浓度情况下也很少促进藻类生长,但共同添加时大多有促进作用.东湖为一严重富营养型湖泊,为了控制其富营养化进程,污水截流应是首先要采取的一项措施.