131 resultados para Scale BCM
Resumo:
样带是沿全球变化某一驱动因素的主要梯度而设置的由一系列研究站点构成的区域,被认为是研究全球变化与陆地生态系统关系的最有效的途径。而模型研究是全球变化研究中不可或缺的手段。本文即采用模型研究方法研究中国东北温带样带(NECT)区域,试图揭示温带生态系统对于全球变化(尤其是降水)的反应机制。
中国东北温带样带(NECT)位于42°N - 46°N,108°E - 132°E,长约二千多公里,是最早被列入GCTE的四条样带之一,从东到西有明显的湿度梯度,被认为是温带区域研究水分梯度的代表性样带。本文研究主要集中在:
1.NECT中环境数据库的建立,本文采用EIS作为数据管理系统。由于EIS管理空间数据的特点是根据确定的地理坐标来提供空间定位,因而每一环境因子的属性值分布都有确定的地理坐标与其对应,特别适合于样带这种研究区域较大,同时又要求有精确空间定位的区域。NECT环境数据库包括地形、气候、植被、土壤、土地利用、水文、孢粉数据及社会经济等分库、本数据库力图提供各环境因子的各种属性值而代替仅仅提供类型值。
2.NECT中PFTs的划分PFTs的划分被认为是建立DGVM的前提。本文认为PFTs的划分是模型研究中一个尺度上升过程的结果,不同的尺度,不同的研究目标导致不同的PFTs的划分。在NECT区域中,考虑植被对全球变化中降水因子的不同反映机制,采用生活型、高度、耐旱特性、叶子大小、叶子季相、主根深度和木质化程度等指标根据- TWINSPAN和FCLUS进行划分,得到以下9种NECT区域中植被功能类型:常绿针叶树种、落叶针叶树种、落叶阔叶树种、落叶小叶灌木、落叶小叶半灌木、落叶强旱生半灌木、多年生中旱生草本、适应旱生环境的多年生草本和多年生强旱生草本。对NECT区域中PFTs的DCA分析表明降水是控制PFTs在NECT区域中分布的主要环境因子。在代表景观层次的长白山PFTs的划分中,则采用树种有记载的最大寿命、最大胸径、最大树高、各树种生长参数、树种自然分布区内>5℃的有效积温的最小值和最大值、耐阴、耐旱、喜肥特性、树种的扩散更新,就地下种更新和萌条更新能力参数及叶子大小和类型等指标采用上述软件得到的以下PFTs:即不耐荫阔叶树种、耐荫阔叶树种、耐荫针叶树种和不耐荫的阳生针叶树种。
3.NECT中BCM模型的建立和预测 本文认为土壤水是决定SPC系统水分状况的直接指标。而均衡土壤水分剖面代表了土壤水的多年平均状态,因而本文以Watershed模型为基础,模拟NECT区域中任意一点的均衡土壤水分剖面(精度为每经纬网格32×48个点);然后根据这个均衡水分剖面用计算LAI子模型确定该水分剖面所能支持的LAI;进而根据这个LAI由Biome等模型划分出Biome在NECT中的分布。全球变化的结果将改变区域中任意一点的土壤水分状况,从而影响植被的LAI,进而导致Biome的改变。本模型成功的模拟了LAI和Biome在NECT区域中的分布,利用85-90生长季每月平均的NDVI作相关检验表明除5月份以外,相关系数都>0.7,而5月份也达到0,6457,都达到了极显著的程度。尤为重要的是,模型对于不同植被类型的NDVI与LAI的对应关系有良好的模拟,如针叶林的LAI在相同的NDVI值下明显比阔叶林小,因而模型模拟的LAI在NECT东部针叶林分布区LAI值比针阔混交林明显偏小,而与Spanmen等(1990)所提出的针叶林叶面积指数与NDVI关系非常一致。模型的预测显示:(1) T+20C (PET+15%),Precipitation+20%,LAI总体上变化不大,且空间变化呈现复杂性,总体上表现出草原植被LAI减少,而森林的LAI增加;Biome层次表现出针阔混交林和矮草原面积扩大,针叶林和森林草原面积减少,其中对于该情形下变化最为明显的是针叶林和森林草原。NECT东部区域发育在沙性土上的植被的LAI明显增加,而科尔沁沙地植被的LAI则维持不变。(2)T+40C (PET+30%),Precipitation+20%,LAI总体上将减小0.14,但空间分布不均。东部森林区域LA1将维持不变或增加(主要为针叶林),草原植被LAI仍表现出减少趋势;在Biome层次上则表现出草原面积的扩大。对于第一种情形下LAI有增有减的森林革原地区则表现出减小的一致性,总体来说,第二种情形比第一种情形表现出相当的干旱性。从对两种全球变化情形的反应来看,针叶林和森林草原是NECT中对全球变化驱动因子温度和降水的敏感植被类型;丽科尔沁沙地植被表现出相当的稳定性,表明该沙地的敏感性主要是由于人类活动这个因子造成的。
4.NECT中景观层次NPP模型的建立和预测 景观层次之所以成为模型研究中一个独特的层次,是由于地形效应的存在。地形效应对于水、热。营养物质的进行重新分配,从而进一步控制了生态系统的分布。本文选择NECT区域中森林生态系统的代表性分布小流域一二道白河小流域为研究区域。首先,应用Sunlight模型来模拟小流域任意一点所截取的能用于光合作用的太阳辐射能。Sunlight模型充分考虑了由于栅格的坡度、坡向和遮蔽度对可照时间和太阳直射辐射的影响以及坡度和可祝度对太阳散射辐射的影响,并提供了消除大气状况从站点观察数据推测的方法,即太阳直射辐射转换系数Rb和太阳散射辐射转换系数R,结合植被的分布特性,得到IPR在小流域中的分布。结果表明,IPR在小流域中相差不大,与高程呈正相关。进而利用温度修正模型得到温度修正系数,平均为0.446,表明温度对NPP的限制效应比较大;而水分修正系数则通过Topmodel模拟每一栅格的地下水位,由这个地下水位通过前述Waterbalance模型模拟均衡土壤水分剖面,进而求出水分修正系数,平均为0.86,表明该流域水分状况良好,水分状况对NPP的限制性不强。模拟结果显示:海拔
Resumo:
A closed, trans-scale formulation of damage evolution based on the statistical microdamage mechanics is summarized in this paper. The dynamic function of damage bridges the mesoscopic and macroscopic evolution of damage. The spallation in an aluminium plate is studied with this formulation. It is found that the damage evolution is governed by several dimensionless parameters, i.e., imposed Deborah numbers De* and De, Mach number M and damage number S. In particular, the most critical mode of the macroscopic damage evolution, i.e., the damage localization, is deter-mined by Deborah number De+. Deborah number De* reflects the coupling and competition between the macroscopic loading and the microdamage growth. Therefore, our results reveal the multi-scale nature of spallation. In fact, the damage localization results from the nonlinearity of the microdamage growth. In addition, the dependence of the damage rate on imposed Deborah numbers De* and De, Mach number M and damage number S is discussed.
Resumo:
For this sake, the macroscopic equations of mechanics and the kinetic equations of the microstructural transformations should form a unified set that be solved simultaneously. As a case study of coupling length and time scales, the trans-scale formulation
Resumo:
This paper reports a multi-scale study on damage evolution process and rupture of gabbro under uniaxial compression with several experimental techniques, including MTS810 testing machine, white digital speckle correlation method, and acoustic emission technique. In particular, the synchronization of the three experimental systems is realized for the study of relationship of deformation and damage at multiple scales. It is found that there are significant correlation between damage evolution at small and large length scales, and rupture at sample scale, especially it displays critical sensitivity at multiple scales and trans-scale fluctuations.
Resumo:
Numerical study of three-dimensional evolution of wake-type flow and vortex dislocations is performed by using a compact finite diffenence-Fourier spectral method to solve 3-D incompressible Navier-Stokes equations. A local spanwise nonuniformity in momentum defect is imposed on the incoming wake-type flow. The present numerical results have shown that the flow instability leads to three-dimensional vortex streets, whose frequency, phase as well as the strength vary with the span caused by the local nonuniformity. The vortex dislocations are generated in the nonuniform region and the large-scale chain-like vortex linkage structures in the dislocations are shown. The generation and the characteristics of the vortex dislocations are described in detail.
Resumo:
The mechanical deformations of nickel nanowire subjected to uniaxial tensile strain at 300 K are simulated by using molecular dynamics with the quantum corrected Sutten-Chen many-body force field. We have used common neighbor analysis method to investigate the structural evolution of Ni nanowire during the elongation process. For the strain rate of 0.1%/ps, the elastic limit is up to about 11% strain with the yield stress of 8.6 GPa. At the elastic stage, the deformation is carried mainly through the uniform elongation of the distances between the layers (perpendicular to the Z-axis) while the atomic structure remains basically unchanged. With further strain, the slips in the {111} planes start to take place in order to accommodate the applied strain to carry the deformation partially, and subsequently the neck forms. The atomic rearrangements in the neck region result in a zigzag change in the stress-strain curve; the atomic structures beyond the region, however, have no significant changes. With the strain close to the point of the breaking, we observe the formation of a one-atom thick necklace in Ni nanowire. The strain rates have no significant effect on the deformation mechanism, but have some influence on the yield stress, the elastic limit, and the fracture strain of the nanowire.
Resumo:
The effects of the unresolved subgrid-scale (SGS) motions on the energy balance of the resolved scales in large eddy simulation (LES) have been investigated actively because modeling the energy transfer between the resolved and unresolved scales is crucial to constructing accurate SGS models. But the subgrid scales not only modify the energy balance, they also contribute to temporal decorrelation of the resolved scales. The importance of this effect in applications including the predictability problem and the evaluation of sound radiation by turbulent flows motivates the present study of the effect of SGS modeling on turbulent time correlations. This paper compares the two-point, two-time Eulerian velocity correlation in isotropic homogeneous turbulence evaluated by direct numerical simulation (DNS) with the correlations evaluated by LES using a standard spectral eddy viscosity. It proves convenient to express the two-point correlations in terms of spatial Fourier decomposition of the velocity field. The LES fields are more coherent than the DNS fields: their time correlations decay more slowly at all resolved scales of motion and both their integral scales and microscales are larger than those of the DNS field. Filtering alone is not responsible for this effect: in the Fourier representation, the time correlations of the filtered DNS field are identical to those of the DNS field itself. The possibility of modeling the decorrelating effects of the unresolved scales of motion by including a random force in the model is briefly discussed. The results could have applications to the problem of computing sound sources in isotropic homogeneous turbulence by LES
Resumo:
Subgrid nonlinear interaction and energy transfer are analyzed using direct numerical simulations of isotropic turbulence. Influences of cutoff wave number at different ranges of scale on the energetics and dynamics have been investigated. It is observed that subgrid-subgrid interaction dominates the turbulent dynamics when cut-off wave number locates in the energy-containing range while resolved-subgrid interaction dominates if it is in the dissipation range; By decomposing the subgrid energy transfer and nonlinear interaction into 'forward' and 'backward' groups according to the sign of triadic interaction, we find that individually each group has very large contribution, but the net of them is much smaller, implying that tremendous cancellation happens between these two groups.
Resumo:
On the basis of the lattice model of MORA and PLACE, Discrete Element Method, and Molecular Dynamics approach, another kind of numerical model is developed. The model consists of a 2-D set of particles linked by three kinds of interactions and arranged into triangular lattice. After the fracture criterion and rules of changes between linking states are given, the particle positions, velocities and accelerations at every time step are calculated using a finite-difference scheme, and the configuration of particles can be gained step by step. Using this model, realistic fracture simulations of brittle solid (especially under pressure) and simulation of earthquake dynamics are made.
Resumo:
The longitudinal fluctuating velocity of a turbulent boundary layer was measured in a water channel at a moderate Reynolds number. The extended self-similar scaling law of structure function proposed by Benzi was verified. The longitudinal fluctuating velocity, in the turbulent boundary layer was decomposed into many multi-scale eddy structures by wavelet transform. The extended self-similar scaling law of structure function for each scale eddy velocity was investigated. The conclusions are I) The statistical properties of turbulence could be self-similar not only at high Reynolds number, but also at moderate and low Reynolds number, and they could be characterized by the same set of scaling exponents xi (1)(n) = n/3 and xi (2)(n) = n/3 of the fully developed regime. 2) The range of scales where the extended self-similarity valid is much larger than the inertial range and extends far deep into the dissipation range,vith the same set of scaling exponents. 3) The extended selfsimilarity is applicable not only for homogeneous turbulence, but also for shear turbulence such as turbulent boundary layers.
Resumo:
了解微尺度气体流动特点是微机电系统设计和优化的基础.有关的研究可以上溯到20世纪初Knudsen的平面槽道流动质量流量的测量和Millikan的小球阻力系数的测量,实验结果揭示了稀薄气体效应即尺度效应对气体运动的重要影响.由于流动特征长度很小,微尺度气流经常处于滑流区甚至过渡领域,流动的相似参数为Knudsen数和Mach数.因此可以考虑利用相似准则,通过增大几何尺寸、减小压力的途径,解决微机电系统实验观测遇到的困难.为解决直接模拟MonteCarlo方法分析微机电系统中低速稀薄气流遇到的统计涨落困难,我们提出了信息保存法(IP),该方法能够有效克服统计散布,并已成功用于多种微尺度气流.
Teracluster LSSC-II - Its Designing Principles and Applications in Large Scale Numerical Simulations
Resumo:
The teracluster LSSC-II installed at the State Key Laboratory of Scientific and Engineering Computing, Chinese Academy of Sciences is one of the most powerful PC clusters in China. It has a peek performance of 2Tflops. With a Linpack performance of 1.04Tflops, it is ranked at the 43rd place in the 20th TOP500 List (November 2002), 51st place in the 21st TOP500 List (June 2003), and the 82nd place in the 22nd TOP500 List (November 2003) with a new Linpack performance of 1.3Tflops. In this paper, we present some design principles of this cluster, as well as its applications in some largescale numerical simulations.
Resumo:
利用自行研制的含热传导、冲击动力学大、变形有限元程序,模拟了小尺寸梁在脉冲激光加热条件下的变形过程。在此基础上,利用商用程序模拟了冷却及残余应力的产生,研究了激光参数(强度及分布)等对于微弯曲的影响。数值模拟结果与文献中的实验观察相吻合。
Resumo:
Two principal problems of equivalency and locality in nano-scale measurement are considered in this paper. The conventional measurements of force and displacement are always closely related to the equivalency problem between the measuremental results by experimental system and the real physical status of the sample, and the locality of the mechanical quantities to be measured. There are some noticeable contradictions in nano-scale measurements induced by the two problems. In this paper, by utilizing a coupled molecular-continuum method, we illustrate the important effects of the two principal problems in atomic force microscopy (AFM) measurements on nano-scale. Our calculations and analysis of these typical mechanical measurement problems suggest that in nano-meter scale measurements, the two principal problems must be carefully dealt with. The coupled molecular-continuum method used in this paper is very effective in solving these problems on nano-scale.