104 resultados para Sand-lime products.
Resumo:
In order to investigate the characteristics of water wave induced liquefaction in highly saturated sand in vertical direction, a one-dimensional model of highly saturated sand to water pressure oscillation is presented based oil the two-phase continuous media theory. The development of the effective stresses and the liquefaction thickness are analyzed. It is shown that water pressure oscillating loading affects liquefaction severely and the developing rate of liquefaction increases with the decreasing of the sand strength or the increasing of the loading strength. It is shown also that there is obvious phase lag in the sand Column. If the sand permeability is non-uniform, the pore pressure and the strain rise sharply at which the smallest permeability occurs. This solution may explain Why the fracture occurs in the sand column in some conditions.
Resumo:
The Boltzmann equation of the sand particle velocity distribution function in wind-blown sand two-phase flow is established based on the motion equation of single particle in air. And then, the generalized balance law of particle property in single phase granular flow is extended to gas-particle two-phase flow. The velocity distribution function of particle phase is expanded into an infinite series by means of Grad's method and the Gauss distribution is used to replace Maxwell distribution. In the case of truncation at the third-order terms, a closed third-order moment dynamical equation system is constructed. The theory is further simplified according to the measurement results obtained by stroboscopic photography in wind tunnel tests.
Resumo:
The gathering systems of crude oil are greatly endangered by the fine sand and soil in oil. Up to now , how to separate sand from the viscid oil is still a technical problem for oil production home or abroad. Recently , Institute of Mechanics in Chinese Academy of Sciences has developed a new type of oil-sand separator , which has been applied successfully in oil field in situ. In this paper, the numerical method of vortex-stream function is used to predict the liquid-solid separating course and the efficiency for this oil-sand separator. Results show that the viscosity and particle diameter have much influence on the particle motion. The calculating separating efficiency is compared with that of experiment and indicates that this method can be used to model the complex two-phase flow in the separator.
Resumo:
In order to investigate the influence of the vertical vibration loading on the liquefaction of saturated sand, one dimensional model for the saturated sand with a vertical vibration is presented based on the two phase continuous media theory. The development of the liquefaction and the liquefaction region are analyzed. It is shown that the vertical vibration loading could induce liquefaction. The rate of the liquefaction increases with the increase of the initial limit strain or initial porosity or amplitude and frequency of loading, and increases with the decrease of the permeability or initial modulus. It is shown also that there is a phase lag in the sand column. When the sand permeability distribution is non-uniform, the pore pressure and the strain will rise sharply where the permeability is the smallest, and fracture might be induced. With the development of liquefaction, the strength of the soil foundation becomes smaller and smaller. In the limiting case, landslides or debris flows could occur.
Resumo:
The formation mechanism of “water film” (or crack) in saturated sand is analyzed theoretically and numerically. The theoretical analysis shows that there will be no stable “water film” in the saturated sand if the strength of the skeleton is zero and no positions are choked. It is shown by numerical simulation that stable water films initiate and grow if the choking state keeps unchanged once the fluid velocities decrease to zero in the liquefied sand column. The developments of “water film” based on the model presented in this paper are compared with experimental results.
Resumo:
The initial small inhomogeneity of saturated sand could be amplified during the sedimentation process after liquefaction, and cracks could be observed in the sand column. Layers of fine sand could also be found at the exact place where cracks developed and disappeared. The phenomena and the whole process were experimentally shown by X-rays images. To account for the phenomena, a linearized stability analysis of the sedimentation of saturated sand was conducted; however, it did not produce a satisfactory result. A three-phase flow model describing the transportation of fine sand is presented in this paper. It is shown that such a kind of erosion/deposition model was qualitatively in good agreement with the experimental observation.
Resumo:
Extended horizontal cracks have! been observed experimentally in a vertical column of saturated sand when a flow of water is forced to percolate upward through it. This paper provides a theory for this phenomenon. It will be shown that the presence of inhomogeneity in permeability along the length of the column is essential for such cracks to develop. It will also be shown that small initial inhomogeneity may be magnified through the transport of the finer component of the sand by percolation. Under certain conditions liquefaction takes place at a section of the sand column causing a crack to initiate and grow there. This theory is found to be in good qualitative agreement with the experimental findings.
Resumo:
从稀相气固两相流理论出发,针对沙尘暴问题的特点,给出描述固相拟流体本构关系和气固相间相互作用的方法,探讨确定沙尘悬浮临界判据的途径,导出多场耦合下含尘大气运动的基本方程,从而可为定量预报沙尘暴系统结构特征和长距离输送传播提供理论基础。
Resumo:
With the PDPA (Phase Doppler Particle Analyzer) measurement technology, the probability distributions of particle impact and lift-off velocities on bed surface and the particle velocity distributions at different heights are detected in a wind tunnel. The results show that the probability distribution of impact and lift-off velocities of sand grains can be expressed by a log-normal function, and that of impact and lift-off angles complies with an exponential function. The mean impact angle is between 28 degrees and 39 degrees, and the mean lift-off angle ranges from 30 degrees to 44 degrees. The mean lift-off velocity is 0.81-0.9 times the mean impact velocity. The proportion of backward-impacting particles is 0.05-0.11, and that of backward-entrained particles ranges from 0.04 to 0.13. The probability distribution of particle horizontal velocity at 4 mm height is positive skew, the horizontal velocity of particles at 20 mm height varies widely, and the variation of the particle horizontal velocity at 80 mm height is less than that at 20 mm height. The probability distribution of particle vertical velocity at different heights can be described as a normal function.
Resumo:
Sand velocity in aeolian sand transport was measured using the laser Doppler technique of PDPA (Phase Doppler Particle Analyzer) in a wind tunnel. The sand velocity profile, probability distribution of particle velocity, particle velocity fluctuation and particle turbulence were analyzed in detail. The experimental results verified that the sand horizontal velocity profile can be expressed by a logarithmic function above 0.01 in, while a deviation occurs below 0.01 m. The mean vertical velocity of grains generally ranges from -0.2 m/s to 0.2 m/s, and is downward at the lower height, upward at the higher height. The probability distributions of the horizontal velocity of ascending and descending particles have a typical peak and are right-skewed at a height of 4 turn in the lower part of saltation layer. The vertical profile of the horizontal RMS velocity fluctuation of particles shows a single peak. The horizontal RMS velocity fluctuation of sand particles is generally larger than the vertical RMS velocity fluctuation. The RMS velocity fluctuations of grains in both horizontal and vertical directions increase with wind velocity. The particle turbulence intensity decreases with height. The present investigation is helpful in understanding the sand movement mechanism in windblown sand transport and also provides a reference for the study of blowing sand velocity. (C) 2007 Elsevier B.V All rights reserved.
Resumo:
Large parts of shallow seas are covered by regular seabed patterns and sand wave is one kind of these patterns. The instability of the sedimentary structures may hazard pipelines and the foundations of offshore structures. In the last decade or so, it's a focus for engineers to investigate the movement mechanism of sand waves. Previous theoretical studies of the subject have developed a general model to predict the growth and migration of sand waves, which is based on the two-dimensional vertical shallow water equations and the bed-form deformation equations. Although the relation between wave-current flow and sand bed deformation has been established, the topographic influence has not been considered in the model. In this paper some special patterns, which are asymmetric and close to the reality, are represent as the perturbed seabed and the evolution of sand waves is calculated. The combination of a steady flow induced by wind and a sinusoidal tidal flow is considered as the basic flow. Finally the relations of some parameters (grain size, etc.) and sand waves' growth and migration are discussed, and the growth rate and migration speeds of asymmetric sand waves are carried out.
Resumo:
The formation mechanism of water film (or crack) in saturated sand is analyzed numerically It is shown that there will be no stable "water film" in the saturated sand even if the strength of the skeleton is zero and no positions are choked. The stable water films initiate and grow if the choking state keeps unchangeable once the fluid velocities of one position decreases to zero in a liquefied sand column. A simplified method for evaluating the thickness of water film is presented according to a solidification wave theory. The theoretical results obtained by the simplified method are compared with the numerical results and the experimental results of Kokusho.
Resumo:
Abstract: The static bearing capacity of suction caisson with single-and four-caissons in saturated sand foundation is studied by experiments. The characteristics of bearing capacity under vertical and horizontal loadings are obtained ex- perimentally. The effects of loading direction on the bearing capacity of four-caissons are studied under horizontal load- ing. The comparison of the bearing capacity of single-caisson and four-caisson foundation, the sealed condition of cais- son’s top and loading rate are analyzed.
Resumo:
The capacity degradation of bucket foundation in liquefied sand layer under cyclic loads such as equivalent dynamic ice-induced loads is studied. A simplified numerical model of liquefied sand layer has been presented based on the dynamic centrifuge experiment results. The ice-induced dynamic loads are modeled as equivalent sine cyclic loads, the liquefaction degree in different position of sand layer and effects of main factors are investigated. Subsequently, the sand resistance is represented by uncoupled, non-linear sand springs which describe the sub-failure behavior of the local sand resistance as well as the peak capacity of bucket foundation under some failure criterion. The capacity of bucket foundation is determined in liquefied sand layer and the rule of capacity degradation is analyzed. The capacity degradation in liquefied sand layer is analyzed comparing with that in non-liquefied sand layer. The results show that the liquefaction degree is 0.9 at the top and is only 0.06 at the bottom of liquefied sand layer. The numerical results are agreement well with the centrifugal experimental results. The value of the degradation of bucket capacity is 12% in numerical simulating whereas it is 17% in centrifugal experiments.