35 resultados para STRUCTURE-BASED DRUG DESIGN
Resumo:
The structure-based sequence motif of the distant proteins in evolution, protein tyrosine phosphatases (PTP) I and II superfamilies, as an example, has been defined by the structural comparison, structure-based sequence alignment and analyses on substitut
Resumo:
P-glycoprotein (P-gp), an ATP-binding cassette (ABC) transporter, functions as a biological barrier by extruding cytotoxic agents out of cells, resulting in an obstacle in chemotherapeutic treatment of cancer. In order to aid in the development of potential P-gp inhibitors, we constructed a quantitative structure-activity relationship (QSAR) model of flavonoids as P-gp inhibitors based on Bayesian-regularized neural network (BRNN). A dataset of 57 flavonoids collected from a literature binding to the C-terminal nucleotide-binding domain of mouse P-gp was compiled. The predictive ability of the model was assessed using a test set that was independent of the training set, which showed a standard error of prediction of 0.146 +/- 0.006 (data scaled from 0 to 1). Meanwhile, two other mathematical tools, back-propagation neural network (BPNN) and partial least squares (PLS) were also attempted to build QSAR models. The BRNN provided slightly better results for the test set compared to BPNN, but the difference was not significant according to F-statistic at p = 0.05. The PLS failed to build a reliable model in the present study. Our study indicates that the BRNN-based in silico model has good potential in facilitating the prediction of P-gp flavonoid inhibitors and might be applied in further drug design.
Resumo:
A 7.8-mu m surface emitting second-order distributed feedback quantum cascade laser (DFB QCL) structure with metallized surface grating is studied. The modal property of this structure is described by utilizing coupled-mode theory where the coupling coefficients are derived from exact Floquet-Bloch solutions of infinite periodic structure. Based on this theory, the influence of waveguide structure and grating topography as well as device length on the laser performance is numerically investigated. The optimized surface emitting second-order DFB QCL structure design exhibits a high surface outcoupling efficiency of 22% and a low threshold gain of 10 cm(-1). Using a pi phase-shift in the centre of the grating, a high-quality single-lobe far-field radiation pattern is obtained.
Resumo:
The multiphase morphology of high impact polypropylene (hiPP), which is a reactor blend of polypropylene (PP) with ethylene-propylene copolymer, was investigated by transmission electron microscopy, selected area electron diffraction, atomic force microscopy, and field-emission scanning electron microscopy techniques in conjunction with an analysis of the hiPP composition and chain structure based on solvent fractionation, C-13-NMR, and differential scanning calorimetry measurements.
Resumo:
We realized an organic electrical memory device with a simple structure based on single-layer pentacene film embedded between Al and ITO electrodes. The optimization of the thickness and deposition rate of pentacene resulted in a reliable device with an on/off current ratio as high as nearly 10(6), which was two orders of magnitude higher than previous results, and the storage time was more than 576 h. The current transition process is attributed to the formation and damage of the Interface dipole at different electric fields, in which the current conduction showed a transition from ohmic conductive current to Fowler-Nordheim tunneling current. After the transition from ON- to OFF-state, the device tended to remain in the OFF-State even when the applied voltage was removed, which indicated that the device was very promising for write-once read-many-times memory.
Resumo:
Structural complexity is an inherent feature of the human telomeric sequence, and it presents a major challenge for developing ligands of pharmaceutical interest. Recent studies have pointed out that the induction of a quadruplex or change of a quadruplex conformation on binding may be the most powerful method to exert the desired biological effect. In this study, we demonstrate a quadruplex ligand that binds selectively to different forms of the human telomeric G-quadruplex structure and regulates its conformational switch. The results show that not only can oxazine750 selectively induce parallel quadruplex formation from a random coil telomeric oligonucleotide, in the absence of added cations, it also can easily surpass the energy barrier between two structures and change the G-quadruplex conformation in Na+ or K+ solution. The combination of its unique properties, including the size and shape of the G-quadruplex and the small molecule, is proposed as the predominant force for regulating the special structural formation and transitions.
Resumo:
The deliberate tailoring of nanostructured metallic catalysts at the monolayer-level is an ongoing challenge and could lead to new electronic and catalytic properties, since surface-catalyzed reactions are extremely sensitive to the atomic-level details of the catalytic surface. In this article, we present a novel electrochemical strategy to nanoparticle-based catalyst design using the recently developed underpotential deposition (UPD) redox replacement technique. A single UPD Cu replacement with Pt2+ yielded a uniform Pt layer on colloid gold surfaces. The ultrathin (nominally monolayer-level) Pt coating of the novel nanostructured particles was confirmed by cyclic voltammetry and X-ray photoelectron spectra (XPS). The present results demonstrate that ultrathin Pt coating effects efficiently and behaves as the nanostructured monometallic Pt for electrocatalytic oxygen reduction, and also shows size-dependent, tunable electrocatalytic ability. The as-prepared ultrathin Pt-coated Au nanoparticle monolayer electrodes reduce O-2 predominantly by four electrons to H2O, as confirmed by the rotating ring-disk electrode (RRDE) technique.
Resumo:
In this work we demonstrate that hexagonal nanodisks of cadmium hydroxide with nanoporous structures could be fabricated by a facile hydrothermal treatment without using any templates or organic additives. With this method, the length of the hexagonal edge and thickness of the nanodisks can be adjusted through controlling the experimental conditions such as the pH value of the mother liquor and the initial concentration of the cadmium ion. On the basis of our experimental observations and understandings of the nanocrystal growth, the formation of the nanodisks is believed to mainly originate from the oriented attachment of small particles. Furthermore, the hexagonal Cd(OH)(2) nanodisks can be converted to CdO semiconductors with similar morphology by calcinations.
Resumo:
Different DNA selectivity was found for the newly synthesized europium-L-valine complex. Unexpected DNA and RNA selection results showed that europium-L-valine complex can cause single-stranded polydA and polyrA to self-structure. The sigmoidal melting curve profiles indicate the transition is cooperative, similar to the cooperative melting of a duplex DNA. This is different from another europium amino acid complex, europium-L-aspartic acid complex which can induce B-Z transition under the low salt condition. To our knowledge, there is no report to show that a metal-amino acid complex can cause the self-structuring of single-stranded DNA and RNA.
Resumo:
First-principle calculations are performed to investigate the structural, elastic, and electronic properties of ReB2 and WB2. The calculated equilibrium structural parameters of ReB2 are consistent with the available experimental data. The calculations indicate that WB2 in the P6(3)/mmc space group is more energetically stable under the ambient condition than in the P6/mmm. Based on the calculated bulk modulus, shear modulus of polycrystalline aggregate, ReB2 and WB2 can be regarded as potential candidates of ultra-incompressible and hard materials. Furthermore, the elastic anisotropy is discussed by investigating the elastic stiffness constants. Density of states and electron density analysis unravel the covalent bonding between the transition metal atoms and the boron atoms as the driving force of the high bulk modulus and high shear modulus as well as small Poisson's ratio.
Resumo:
本文设计了研磨抛光机器人分布式控制系统中的一种运动控制器,并对运动控制器基于AT91M40800微控制器的硬件结构、基于μC/OS-Ⅱ实时操作系统的软件模块和采用的参数模糊自整定PID机器人关节位置控制策略进行了详细介绍。实验表明该控制器可以大大降低研磨抛光机器人的位置跟踪误差。提高了关节控制的计算及处理能力,易于扩展和维护。
Resumo:
China is experiencing a rapid development of highway ever since 1990s. By the end of 2004, the total length of the highway summed up to 33 thousand kilometers, ranking 2n in the world. After the open of highway, the accumulation of time and traffic causes the decrease of its capability. To ensure its good quality, security and operation functions, we should take some reasonable measures to maintain it periodically. At present, a big problem is that the traditional maintain measures can no longer meet the increasing requirements. Due to the characters of highway, the relationship of various maintenance data and geographic positions is even closer than any others. If we wan to improve the quality and efficiency of the maintenance work, particularly when there is need for decision-making, a great number of data that is related to geographic positions are absolutely necessary. Evidently, Geographical Information System (GIS) has incomparably advantages in dealing with these spatial information. As a result, a management system for highway maintenance work based on GIS became inevitable for the development of the maintenance of highway. The purpose of this paper is to establish a management system for highway maintenance work base on Geographical Information System (GIS), Global Positioning System (GPS) and spatial database, to manage all kinds of problems encountered in the work, and to provide support on information and methods. My study mainly includes: (1) Analysis on the current status of the maintenance and management work; overview on the history of domestic and international highway maintenance management systems; identifying the necessity and importance for establishing a management system for highway maintenance work based on GIS. (2) Based on the requirement analysis, I proposed a general design for this management system, and discussed the objective, design principles, framework, systematical structure and function design. (3) Outdoor data collection is not only a prime way to understand the current situation of the road, but also an important method for data update after the system is put into use. This paper also intends to establish a set of plan to collect data efficiently and precisely which is based on GIS and GPS technologies. (4) The maintenance management database is a supporting platform for various maintenance decision-makings. Such decisions need the support of a great amount of data, which would cause other problems, such as the diversity of the data source, difference of data formats. This paper also discussed how to deal with these problems and establish such a database. (5) To propose an approach to assess the condition of pavement, based on GIS and related maintenance models. Among all the maintenance models, the two for assessing and forecasting pavement condition are the most important and mature. This paper also analyzed these two models and introduced them in terms of the integration of models. (6) This paper took the Guangshen Highway for example, explaining how to realize a GIS for management of highway maintenance work.
Resumo:
Amino acid substitution matrices play an essential role in protein sequence alignment, a fundamental task in bioinformatics. Most widely used matrices, such as PAM matrices derived from homologous sequences and BLOSUM matrices derived from aligned segments of PROSITE, did not integrate conformation information in their construction. There are a few structure-based matrices, which are derived from limited data of structure alignment. Using databases PDB_SELECT and DSSP, we create a database of sequence-conformation blocks which explicitly represent sequence-structure relationship. Members in a block are identical in conformation and are highly similar in sequence. From this block database, we derive a conformation-specific amino acid substitution matrix CBSM60. The matrix shows an improved performance in conformational segment search and homolog detection.