251 resultados para SIMULTANEOUS BLUE
Resumo:
White-light emission is achieved from a single layer of diblock copolymer micelles containing green- and red-light-emitting dyes in the separate micellar cores and blue-light-emitting polymer around their periphery, in which fluorescence resonance energy transfer between fluorophores is inhibited due to micelle isolation, resulting in simultaneous emission of these three species.
Resumo:
A highly efficient white electroluminescent polymer with simultaneous blue, green, and red emission is reported, developed using a dopant/host strategy by covalently attaching both a green- and a red-light-emitting dopant to the side chain of a blue-light-emitting polymer host (see figure). In a single-layer device a maximum luminance efficiency of 7.3 cd A(-1) with CIE coordinates of (0.31,0.32) is achieved.
Resumo:
New single-polymer electroluminescent systems containing two individual emission species - polyfluorenes as a blue host and 2,1,3-benzothiadiazole derivative units as an orange dopant on the main chain - have been designed and synthesized. The resulting single polymers are found to have highly efficient white electroluminescence with simultaneous blue(lambda(max) = 421 nm/445 nm) and orange emission (lambda(max) = 564 nm)from the corresponding emitting species. The influence of the photoluminescence (PL) efficiencies of both the blue and orange species on the electroluminescence (EL) efficiencies of white polymer light-emitting diodes (PLEDs) based on the single-polymer systems has been investigated. The introduction of the highly efficient 4,7-bis(4-(N-phenyl-N-(4-methylphenyl)amino)phenyl)-2,1,3-benzothiadiazole unit to the main chain of polyfluorene provides significant improvement in EL efficiency. For a single-layer device fabricated in air (indium tin oxide/poly(3,4-ethylenedioxythiophene): poly(styrene sulfonic acid/polymer/Ca/Al), pure-white electroluminescence with Commission Internationale de l'Eclairage (CIE) coordinates of (0.35,0.32), maximum brightness of 12 300 cd m(-2), luminance efficiency of 7.30 cd A(-1), and power efficiency of 3.34 lm W-1 can be obtained.
Resumo:
A novel series of white light emitting single polymers are prepared by incorporating low contents of quinacridone into the main chain of polyfluorene. This is the first report of quinacridone-containing conjugated polymer. Single layer devices (ITO/PEDOT:PSS/polymer/Ca/Al) are fabricated with these polymers. Energy transfer from fluorene segments to quinacridone unit is observed. Moreover, in the EL process, quinacridone unit can trap electrons and cannot trap holes from fluorene segments.
Resumo:
By selecting polyfluorene as the polymer host, choosing 2,1,3-benzothiadiazole derivative moieties as the red dopant units and covalently attaching 0.3 mol% of the dopant units to the side chain of the polymer host, we developed a novel series of red electroluminescent polymers of dopant/host system with molecular dispersion feature. Their EL spectra exhibited predominant red emission from the dopant units because of the energy transfer and charge trapping from the polymer backbone to the dopant units. The emission wavelength of the polymers could be tuned by modifying the chemical structures of the dopant units.
Resumo:
A novel strategy for obtaining white electroluminescence (EL) is based on the mechanism of electron trapping on host. Phosphonate-functionalized polyfluorene is chosen as host owing to its strong electron affinity. Electrons are confined mostly by host pendants in the EL process, which suppresses charge transfer from host to dopant. White EL with CIE coordinates of (0.34,0.35) is achieved.
Resumo:
A series of block copolymers containing nonconjugated spacer and 3D pi-pi stacking structure with simultaneous blue-, green-, and yellow-emitting units has been synthesized and characterized. The dependence of the energy transfer and electroluminescence (EL) properties of these block copolymers on the contents of oligo(phenylenevinylene)s has been investigated. The block copolymer (GEO8-BEO-YEO4) with 98.8% blue-emitting oligomer (BEO), 0.8% green-emitting oligomer (GEO), and 0.4% yellow-emitting oligomer (YEO) showed the best electroluminescent performance, exhibiting a maximum luminance of 2309 cd/m(2) and efficiency of 0.34 cd/A. The single-layer-polymer light-emitting diodes device based on GEO2-BEO-YEO4 emitted greenish white light with the CIE coordinates of (0.26, 0.37) at 10 V. The synergetic effect of the efficient energy transfer and 3D pi-pi stack of these block copolymers on the photoiuminescent and electroluminescent properties are investigated.
Resumo:
A slab optical waveguide (SOWG) has been used for study of adsorption of both methylene blue (MB) and new methylene blue (NMB) in liquid-solid interface. Adsorption characteristics of MB and NMB on both bare SOWG and silanized SOWG by octadecyltrichlorosilane (ODS) were compared. The simultaneous determinations of both MB and NMB were explored by flow injection SOWG spectrophotometric analysis and artificial neural networks (ANNs) for the first time. Concentrations of MB and NMB were estimated simultaneously with the ANNs. Results obtained with SOWG were compared with those got by conventional UV-visible spectrophotometry. (C) 2003 Elsevier Science B.V All rights reserved.
Resumo:
Four single polymers with two kinds of attachment of orange chromophore to blue polymer host for white electroluminescence (EL) were designed. The effect of the side-chain attachment and main-chain attachment on the EL efficiencies of the resulting polymers was compared. The side-chain-type single polymers are found to exhibit more efficient white EL than that of the main-chain-type single polymers. Based on the side-chain-type white single polymer with 4-(4-alkyloxy-phenyl)-7-(4-diphenylamino-phenyl)-2,1,3-benzothiadiazoles as the orange-dopant unit and polyfluorene as the blue polymer host, white EL with simultaneous orange (lambda(max) = 545 nm) and blue emission (lambda(max) = 432 nm/460 nm) is realised. A single-layer device (indium tin oxide/poly(3,4-ethylenedioxythiophene)/polymer/Ca/Al) made of these polymers emits white light with the Commission Internationale de l'Eclairage coordinates of (0.30,0.40), possesses a turn-on voltage of 3.5 V, luminous efficiency of 10.66 cd A(-1), power efficiency of 6.68 lm W-1, and a maximum brightness of 21240 cd m(-2).
Resumo:
Blue frequency-upconversion fluorescence emission has been observed in Ce3+-doped Gd2SiO5 single crystals, pumped with 120-fs 800 nm IR laser pulses. The observed fluorescence emission peaks at about 440nm is due to 5d -> 4f transition of Ce3+ ions. The intensity dependence of the blue fluorescence emission on the IR excitation laser power obeys the cubic law, demonstrating three-photon absorption process. Analysis suggested that three-photon simultaneous absorption induced population inversion should be the predominant frequency upconversion mechanism. (c) 2006 Optical Society of America.
Resumo:
A star-like white light-emitting polymer with an orange emissive core and four blue emissive arms is designed and synthesized. White electroluminescence is observed with simultaneous orange emission from the core and blue emission from the arms. A single-layer device based on this polymer emits white light with CIE coordinates of (0.35, 0.39) and a luminous efficiency of 7.06 cd A(-1).
Resumo:
A white electroluminescent single polymer system with both high electroluminescence efficiency and excellent color rendering index (CRI) value is developed by covalently attaching blue, green, and red dopant units as individual light-emitting species to the side chain of polyfluorene as individual polymer host. A luminous efficiency of 8.6 cd A(-1), CIE coordinates of (0.33, 0.36) and CRI value of 88 was demonstrated with their single-layer devices.
Resumo:
A combined detection system of simultaneous contactless conductometric and fluorescent detection for capillary electrophoresis (CE) has been designed and evaluated. The two processes share a common detection cell. A blue light-emitting diode (LED) was used as the excitation source and an optical fiber was used to collect the emitting fluorescence for fluorescent detection (FD). Inorganic ions, fluorescein isothiocyanate (FITC)-labeled amino acids and small molecule peptides were separated and detected by the combined detector, and the detection limits (LODs) of sub-μ M level were achieved.
Simultaneous Laser-Induced Fluorescence And Contactless-Conductivity Detection For Microfluidic Chip
Resumo:
A combined detection system involving simultaneous LIF and contactless-conductometric measurements at the same place of the microfluidic chip was described. The LIF measurement was designed according to the confocal principle and a moveable contactless-conductivity detector was used in (CD)-D-4. Both measurements were mutually independent and advantageous in analyses of mixtures. Various experimental parameters affecting the response were examined and optimized. The performances were demonstrated by simultaneous detection of Rhodamine B. And the results showed that the combined detection system could be used sensitively and reliably. (C) 2008 Yong Yu. Published by Elsevier B.V. on behalf of Chinese Chemical Society. All rights reserved.