107 resultados para Rotation frequency
Resumo:
通过传输矩阵法分析了材料介电常数的变化对于单缺陷结构的磁光多层膜隔离器性能的响,并提出了一种多缺陷结构的磁光多层膜结构.同单缺陷结构相比,多缺陷结构的旋转角的频谱响应带宽有很大增加,对于材料介电常数变化的宽容性得到了一个数量级的提高.同时这种多缺陷的结构对于膜层厚度的变化和入射角度也有很好的宽容性.
Resumo:
Spin dynamics in (Ga,Mn)As films grown on GaAs(001) was investigated by Time-resolved magneto-optical Kerr effect. The Kerr signal decay time of (Ga,Mn)As without external magnetic field applied was found to be several hundreds picoseconds, which suggested that photogenerated polarized holes and magnetic ions are coupled as a ferromagnetic system. Nonmonotonic temperature dependence of relaxation and dephasing (R&D) time and Larmor frequency manifests that Bir-Aronov-Pikus mechanism dominates the spin R&D time at low temperature, while D'yakonov-Perel mechanism dominates the spin R&D time at high temperature, and the crossover between the two regimes is Curie temperature.
Resumo:
The nonlinear behavior varying with the instantaneous response was analyzed through the joint time-frequency analysis method for a class of S. D. O. F nonlinear system. A masking operator an definite regions is defined and two theorems are presented. Based on these, the nonlinear system is modeled with a special time-varying linear one, called the generalized skeleton linear system (GSLS). The frequency skeleton curve and the damping skeleton curve are defined to describe the main feature of the non-linearity as well. Moreover, an identification method is proposed through the skeleton curves and the time-frequency filtering technique.
Resumo:
In the previous paper, a class of nonlinear system is mapped to a so-called skeleton linear model (SLM) based on the joint time-frequency analysis method. Behavior of the nonlinear system may be indicated quantitatively by the variance of the coefficients of SLM versus its response. Using this model we propose an identification method for nonlinear systems based on nonstationary vibration data in this paper. The key technique in the identification procedure is a time-frequency filtering method by which solution of the SLM is extracted from the response data of the corresponding nonlinear system. Two time-frequency filtering methods are discussed here. One is based on the quadratic time-frequency distribution and its inverse transform, the other is based on the quadratic time-frequency distribution and the wavelet transform. Both numerical examples and an experimental application are given to illustrate the validity of the technique.
Resumo:
A Monte Carlo simulation is performed to study the dependence of collision frequency on interparticle distance for a system composed of two hard-sphere particles. The simulation quantitatively shows that the collision frequency drops down sharply as the distance between two particles increases. This characteristic provides a useful evidence for the collision-reaction dynamics of aggregation process for the two-particle system described in the other reference.
Resumo:
The frequency characteristics of a VCSEL with a quarter-wave plate (QWP) and an external reflector are investigated with the translation matrix of the vectorial field. Two series of eigenmode with a shift of half the free spectrum range are linearly polarized, respectively, along the neutral axes of QWP. We also numerically explore the polarization self-modulation phenomenon by using a vectorial laser equation and considering the inhomogeneous broadening of the gain medium. If the external cavity is so short that the shift is bigger than the homogeneous broadening, two stable longitudinal modes oscillate, respectively, on the neutral axes of QWP because they consume different carriers. With a long external cavity, the competition of the modes for the common carriers causes the intensity fluctuation of the modes with a period of one round-trip time of the external cavity.
Resumo:
Microcantilever-based biosensors have been found increasing applications in physical, chemical, and biological fields in recent years. When biosensors are used in those fields, surface stress and mass variations due to bio-molecular binding can cause the microcantilever deform or the shift of frequency. These simple biosensors allow biologists to study surface biochemistry on a micro or nano scale and offer new opportunities in developing microscopic biomedical analysis with unique characteristics. To compare and illustrate the influence of the surface stress on the frequency and avoid unnecessary and complicated numerical solution of the resonance frequency, some dimensionless numbers are derived in this paper by making governing equations dimensionless. Meanwhile, in order to analyze the influence of the general surface stress on the frequency, a new model is put forward, and the frequency of the microcantilever is calculated by using the subspace iteration method and the Rayleigh method. The sensitivity of microcantilever is also discussed. (19 refs.)
Resumo:
The joint time-frequency analysis method is adopted to study the nonlinear behavior varying with the instantaneous response for a class of S.D.O.F nonlinear system. A time-frequency masking operator, together with the conception of effective time-frequency region of the asymptotic signal are defined here. Based on these mathematical foundations, a so-called skeleton linear model (SLM) is constructed which has similar nonlinear characteristics with the nonlinear system. Two skeleton curves are deduced which can indicate the stiffness and damping in the nonlinear system. The relationship between the SLM and the nonlinear system, both parameters and solutions, is clarified. Based on this work a new identification technique of nonlinear systems using the nonstationary vibration data will be proposed through time-frequency filtering technique and wavelet transform in the following paper.
Resumo:
Existing models of baroclinic tides are based upon the "traditional approximation'', i. e., neglect of the horizontal component of the Earth's rotation, leading to a well- known conclusion that no freely propagating internal waves can exist beyond the critical latitude and the wave rays are symmetric to the vertical. However, recent studies have contended that the situation may change if both the vertical and horizontal components of the Earth's rotation are taken into account. With the full account of the Coriolis force, characteristics of the internal wavefield generated by tidal flow over uneven topography are investigated. It is found that "nontraditional effects'' profoundly change not only the dynamics of internal waves but also the rate at which the barotropic tidal energy is fed into the internal wavefield. Discarding the traditional approximation, internal waves are proved to be able to generate poleward of the critical latitude, rays of which are no longer symmetric and the limiting values of ray angles become greater or less than 90 degrees, depending on the local latitude and the direction of ray. More importantly, in contrast to the predictions of models based upon the traditional approximation, a substantial conversion occurs in the situations when stratification is so weak that the buoyancy frequency is below the tidal one.
Resumo:
In this paper, a method to construct topological template in terms of symbolic dynamics for the diamagnetic Kepler problem is proposed. To confirm the topological template, rotation numbers of invariant manifolds around unstable periodic orbits in a phase space are taken as an object of comparison. The rotation numbers are determined from the definition and connected with symbolic sequences encoding the periodic orbits in a reduced Poincare section. Only symbolic codes with inverse ordering in the forward mapping can contribute to the rotation of invariant manifolds around the periodic orbits. By using symbolic ordering, the reduced Poincare section is constricted along stable manifolds and a topological template, which preserves the ordering of forward sequences and can be used to extract the rotation numbers, is established. The rotation numbers computed from the topological template are the same as those computed from their original definition.
Wave propagation and the frequency domain Green's functions in viscoelastic Biot/squirt (BISQ) media
Resumo:
In this paper, we examine the characteristics of elastic wave propagation in viscoelastic porous media, which contain simultaneously both the Biot-flow and the squirt-flow mechanisms (BISQ). The frequency-domain Green's functions for viscoelastic BISQ media are then derived based on the classic potential function methods. Our numerical results show that S-waves are only affected by viscoelasticity, but not by squirt-flows. However, the phase velocity and attenuation of fast P-waves are seriously influenced by both viscoelasticity and squirt-flows; and there exist two peaks in the attenuation-frequency variations of fast P-waves. In the low-frequency range, the squirt-flow characteristic length, not viscoelasticity, affects the phase velocity of slow P-waves, whereas it is opposite in the high-frequency range. As to the contribution of potential functions of two types of compressional waves to the Green's function, the squirt-flow length has a small effect, and the effects of viscoelastic parameter are mainly in the higher frequency range. Crown Copyright (C) 2006 Published by Elsevier Ltd. All rights reserved.
Resumo:
An efficient method for solving the spatially inhomogeneous Boltzmann equation in a two-term approximation for low-pressure inductively coupled plasmas has been developed. The electron distribution function (EDF), a function of total electron energy and two spatial coordinates, is found self-consistently with the static space-charge potential which is computed from a 2D fluid model, and the rf electric field profile which is calculated from the Maxwell equations. The EDF and the spatial distributions of the electron density, potential, temperature, ionization rate, and the inductive electric field are calculated and discussed. (C) 1996 American Institute of Physics.
Resumo:
A low-dimensional Galerkin method, initiated by Noack and Eckelmann [Physica D 56, 151 (1992)], for the prediction of the flow field around a stationary two-dimensional circular cylinder in a uniform stream at low Reynolds number is generalized to the case of a rotating and translating cylinder. The Hopf bifurcation describing the transition from steady to time-periodic solution is investigated. A curve indicating the transitional boundary is given in the two-dimensional parameter plane of Reynolds number Re and rotating parameter alpha. Our results show that rotation may delay the onset of vortex street and decrease the vortex-shedding frequency. (C) 1996 American Institute of Physics.
Resumo:
The influence of vibration on thermocapillary convection and critical Marangoni number in liquid bridge of half floating zone was discussed for the low frequency range 0.4-1.5 Hz and the intermediate frequency range 2.5-15 Hz in our previous papers. This paper extends the study to high frequency range 15-100Hz. This ground based experiment was completed on the deck of an electromagnetic vibration machine. The results of our experiment shows when the frequency of the applied acceleration is high enough, the amplitude of the time varying part of the temperature response is disappear and the shape of the free surface of the liquid bridge exhibits no fluctuations due to inertia. The critical Marangoni number which is defined to describe the transitions from a peroidical convection in response to vibration to an oscillatory convection due to internal instability is nearly the same as the critical Marangoni number for oscillatory flow in the absence of vibration.