28 resultados para Recursive Partitioning and Regression Trees (RPART)
Resumo:
Data on sleep-related behaviors were collected for a group of central Yunnan black crested gibbons (Nomascus concolor jingdongensis) at Mt. Wuliang, Yunnan, China from March 2005 to April 2006. Members of the group usually formed four sleeping units (adult male and juvenile, adult female with one semi-dependent black infant, adult female with one dependent yellow infant, and subadult male) spread over different sleeping trees. Individuals or units preferred specific areas to sleep; all sleeping sites were situated in primary forest, mostly (77%) between 2,200 and 2,400 m in elevation. They tended to sleep in the tallest and thickest trees with large crowns on steep slopes and near important food patches. Factors influencing sleeping site selection were (1) tree characteristics, (2) accessibility, and (3) easy escape. Few sleeping trees were used repeatedly by the same or other members of the group. The gibbons entered the sleeping trees on average 128 min before sunset and left the sleeping trees on average 33 min after sunrise. The lag between the first and last individual entering the trees was on average 17.8 min. We suggest that sleep-related behaviors are primarily adaptations to minimize the risk of being detected by predators. Sleeping trees may be chosen to make approach and attack difficult for the predator, and to provide an easy escape route in the dark. In response to cold temperatures in a higher habitat, gibbons usually sit and huddle together during the night, and in the cold season they tend to sleep on ferns and/or orchids.
Resumo:
In many plant species, leaf morphology varies with altitude, an effect that has been attributed to temperature. It remains uncertain whether such a trend applies equally to juvenile and mature trees across altitudinal gradients in semi-arid mountain regions. We examined altitude-related differences in a variety of needle characteristics of juvenile (2-m tall) and mature (5-m tall) alpine spruce (Picea crassifolia Kom.) trees growing at altitudes between 2501 and 3450 m in the Qilian Mountains of northwest China. We found that stable carbon isotope composition (delta C-13), area- and mass-based leaf nitrogen concentration (N-a, N-m), number of stomata per gram of nitrogen (St/N), number of stomata per unit leaf mass (St/LM), projected leaf area per 100 needles (LA) and leaf mass per unit area (LMA) varied nonlinearly with altitude for both juvenile and mature trees, with a relationship reversal point at about 3 100 m. Stomatal density (SD) of juvenile trees remained unchanged with altitude, whereas SD and stomatal number per unit length (SNL) of mature spruce initially increased with altitude, but subsequently decreased. Although several measured indices were generally found to be higher in mature trees than in juvenile trees, N-m, leaf carbon concentration (C.), leaf water concentration. (LWC), St/N, LA and St/LM showed inconsistent differences between trees of different ages along the altitudinal gradient. In both juvenile and mature trees, VC correlated significantly with LMA, N-m, N-a, SNL, St/LM and St/N. Stomatal density, LWC and LA were only significantly correlated with delta C-13 in mature trees. These findings suggest that there are distinct ecophysiological differences between the needles of juvenile and mature trees that determine their response to changes in altitude in semi-arid mountainous regions. Variations in the fitness of forests of different ages may have important implications for modeling forest responses to changes in environmental conditions, such as predicted future temperature increases in high attitude areas associated with climate change.
Resumo:
The present study was carried out to investigate the influence of water temperature on the growth performance and digestive enzyme (pepsin, trypsin and lipase) activities of Chinese longsnout catfish. Triplicate groups of Chinese longsnout catfish (35.6 +/- 0.48 g, mean +/- SE) were reared at different water temperatures (20, 24, 28 and 32 degrees C). The feeding rate (FR), specific growth rate (SGR) and feed efficiency ratio (FER) were significantly affected by water temperatures and regression relationships between water temperature and FI, SGR as well as FER were expressed as FR=-0.016T2+0.91T-10.88 (n=12, R2=0.8752), SGR=-0.026T2+1.39T-17.29 (n=12, R2=0.7599) and FER=-0.013T2+0.70T-8.43 (n=12, R2=0.7272). Based on these, the optimum temperatures for FR, SGR and FER were 27.66, 26.69 and 26.44 degrees C respectively. The specific activities of digestive enzymes at 24 or 28 degrees C were significantly higher than that at 20 or 32 degrees C. In addition, there was a significant linear regression between FR or SGR and specific activities of pepsin and lipase, which indicated that pepsin and lipase played important roles in regulating growth through nutrient digestion in Chinese longsnout catfish.
Resumo:
In this paper, two models of coalition and income's distribution in FSCS (fuzzy supply chain systems) are proposed based on the fuzzy set theory and fuzzy cooperative game theory. The fuzzy dynamic coalition choice's recursive equations are constructed in terms of sup-t composition of fuzzy relations, where t is a triangular norm. The existence of the fuzzy relations in FSCS is also proved. On the other hand, the approaches to ascertain the fuzzy coalition through the choice's recursive equations and distribute the fuzzy income in FSCS by the fuzzy Shapley values are also given. These models are discussed in two parts: the fuzzy dynamic coalition choice of different units in FSCS; the fuzzy income's distribution model among different participators in the same coalition. Furthermore, numerical examples are given aiming at illustrating these models., and the results show that these models are feasible and validity in FSCS.
Resumo:
Concept maps are an important tool to knowledge organization,representation, and sharing. Most current concept map tools do not provide full support for hand-drawn concept map creation and manipulation, largely due to the lack of methods to recognize hand-drawn concept maps. This paper proposes a structure recognition method. Our algorithm can extract node blocks and link blocks of a hand-drawn concept map by combining dynamic programming and graph partitioning and then build a concept-map structure by relating extracted nodes and links. We also introduce structure-based intelligent manipulation technique of hand-drawn concept maps. Evaluation shows that our method has high structure recognition accuracy in real time, and the intelligent manipulation technique is efficient and effective.
Resumo:
The main factors affecting interrill erosion-including runoff discharge, rainfall intensity, mean flow velocity, and slope gradient-were analyzed by using a gray relational analysis. An equation for interrill erosion was derived by coupling this analysis with dimensional and regression analyses. The values of erosion rates predicted by this equation were in good agreement with experimental observations.
Resumo:
研究植被、物种分布与环境的关系一直是生态学中的重点。长期以来,在全球变化与陆地生态系统的研究中,主要研究重点是对大尺度植被分布的模拟和预测,并建立了大量的气候-植被分布关系模型。而对于物种潜在分布的模拟和预测,国内外相关的研究较少。近年来,随着统计技术和地理信息系统的发展,用于预测物种分布的统计模型技术得到了迅速的发展。统计模型技术已被广泛应用于生物地理分布、植物群落、生物多样性、气候变化影响评估等方面。 本论文基于当前在物种分布研究中应用广泛的广义线性模型、广义加法模型及分类回归树3种统计模型技术,对我国常见树种的地理分布进行模拟分析,并比较不同模型模拟精度的优劣,将模拟精度较高的模型应用于预测未来气候情景下我国几种主要树种的未来潜在地理分布。 基于建立的广义线性模型(GLM)、二次项逐步回归广义线性模型(SGLM)、广义加法模型(GAM)和分类回归树(CART)4个模型对我国20种常见树种地理分布进行模拟,结果表明,4个模型均有较高的模拟精度。GAM的模拟精度最高;添加二次项并进行逐步回归有效的提高了GLM的模拟精度;CART是一种基于规则的模型技术,模拟结果比GLM稍好,比GAM略差。 对不同树种的模拟分析表明,4个模型对于主要分布在暖温带落叶阔叶林区域的油松、辽东栎分布的模拟结果较差;GLM对分布在温带针阔混交林中红松、蒙古栎、胡桃楸和糠椴的模拟结果不太理想;4个模型对分布在中国亚热带常绿阔叶林区域的树种均表现出较高的模拟精度;对广布种也表现出很高的模拟精度。 结合地理信息系统,以地图形式将青冈、油松的模拟结果表示出来。结果表明:地理信息系统直观的反映出了模型模拟结果差异。4个模型均能很好模拟青冈的分布,且模拟结果接近;而对油松分布模拟结果4个模型均不甚理想,以GLM最差。这些结果与模型模拟评估结果相吻合。 在未来气候变化情景下,基于4个模型模拟结果优劣,以我国三种主要造林树种马尾松、油松、红松和两种常见树种青冈、蒙古栎为研究对象,分析其未来变化趋势。结果表明,未来气候变化情景下,对于马尾松而言,4个模型均预测马尾松在基本保持原有分布的基础上,其未来潜在分布区域均有所扩大,且有向西和向北扩展的趋势;对于油松而言,基于GLM、SGLM和GAM3个模型,油松的未来潜在分布除有北移的趋势外,其分布区还将向东北和西南两个方向扩展;对于红松而言,基于SGLM、GAM和CART3个模型的预测结果较为接近,即红松的未来潜在分布区域将有所减少;对蒙古栎而言,4个模型预测蒙古栎未来分布均将向西扩展;对青冈而言,4个模型预测青冈能基本保持其原有分布区,并向西和向北扩展,其中CART预测结果还表明,青冈在广东南部及广西南部的分布区域将消失。
Resumo:
Iron deficiency can induce cyanobacteria to synthesize siderophore receptor proteins on the outer membrane to enhance the uptake of iron. In this study, an outer membrane of high purity was prepared from Anabaena sp. PCC 7120 based on aqueous polymer two-phase partitioning and discontinuous sucrose density ultra-centrifugation, and the induction of outer membrane proteins by iron deficiency was investigated using 2-D gel electrophoresis. At least. five outer membrane proteins were newly synthesized or significantly up-regulated in cells transferred to iron-deficient conditions, which were all identified to be siderophore receptor proteins according to MALDI-TOF-MS analyses. Bacterial luciferase reporter genes luxAB were employed to monitor the transcription of the encoding genes. The genes were induced by iron deficiency at the transcriptional level in different responsive modes. Luciferase activity expressed from an iron-regulated promoter may be used as a bioreporter for utilizable iron in natural water samples. (C) 2009 National Natural Science Foundation of China and Chinese Academy of Sciences. Published by Elsevier Limited and Science in China Press. All rights reserved.
Resumo:
Complete mitochondrial cytochrome b sequences of 54 species, including 18 newly sequenced, were analyzed to infer the phylogenetic relationships within the family Cyprinidae in East Asia. Phylogenetic trees were generated using various tree-building methods, including Neighbor-joining (NJ), Maximum Parsimony (MP) and Maximum Likelihood (ML) methods, with Myxocyprinus asiaticus (family Catostomidae) as the designated outgroup. The results from NJ and ML methods were mostly similar, supporting some existing subfamilies within Cyprinidae as monophyletic, such as Cultrinae, Xenocyprinae and Gobioninae (including Gobiobotinae). However, genera within the subfamily "Danioninae" did not form a monophyletic group. The subfamily Leuciscinae was divided into two unrelated groups: the "Leuciscinae" in East Asia forming as a monophyletic group together with Cultrinae and Xenocyprinae, while the Leuciscinae in Europe, Siberia, and North America as another monophyletic group. The monophyly of subfamily Cyprininae sensu Howes was supported by NJ and ML trees and is basal in the tree. The position of Acheilognathinae, a widely accepted monophyletic group represented by Rhodeus sericeus, was not resolved.
Resumo:
超图划分应用于大规模矩阵计算、大规模集成电路等领域.详细地阐述了超图多级划分的算法框架,并提出对划分结果进行优化的一种手段,通过进行多阶段的V循环优化,在可以接受的运行时间内得到对超图的一个较优的划分.
Resumo:
超图划分应用于大规模矩阵计算、大规模集成电路等领域.详细地阐述了超图多级划分的算法框架,并提出对划分结果进行优化的一种手段,通过进行多阶段的循环优化,在可以接受的运行时间内得到对超图的一个较优的划分.
Resumo:
在青藏高原东部的亚高山针叶林区,如何尽快恢复这一生态脆弱地区的植被,改变生态环境恶化的趋势,是一个十分重要的课题。光一直被认为是植物种间相互替代,尤其是森林演替过程中植物相互替代或植被恢复中的关键环境要素之一。植物能否适应林冠下或林窗中异质的、或多变的光照条件,对其在林中的生存、分布、更新以及森林动态都是非常重要的。 本文以青藏高原东部亚高山针叶林的主要森林类型——岷江冷杉林群落的几种树苗为研究对象,采用实验生态学、生理及生物化学等方法,通过模拟针叶林不同大小林窗内光照强度的变化,在中国科学院茂县生态站内采用遮荫处理设置6个光照梯度(100、55、40、25、15与7%全光照),来研究具有不同喜光特性的植物对光强的响应与适应机制,其研究结果可为揭示亚高山针叶林的演替规律、以及人工林下幼苗的存活与定居提供科学依据,也能为苗木的生产与管理提供科学指导,尤其是对针阔树种在不同光强下的响应与适应的比较研究,能为如何将阔叶树种整合到人工针叶林中提供新的思路。 光强对植物生长的影响 光强对植物的生长具有重要作用,不同植物在各自适宜的光强梯度下才能生长良好。通过一个野外盆栽实验,来研究不同光强对植物生长的影响(第三章)。主要研究结果如下,低光强下植物株高/茎生物量增加,说明植物会将生物量更多用于高生长,以便有效地拦截光资源;在强光下,植物将生物量更多地向根部分配,使得植物在强光下能够吸收更多的水分,而避免干旱胁迫。 在第一个生长季节,以相对生长速率(RGR)表示,红桦和青榨槭在100%全光照下RGR最大,粗枝云杉在55%最大,岷江冷杉在25-40%下较好;然而,在第二个生长季节,2种阔叶树的相对生长速率(RGR)的适宜光强则变为25-55%,云杉为55-100%,而冷杉为25-100%。可见,从第一年到第二年,2种阔叶树苗更适宜在部分荫蔽的条件下生长;而2种针叶树苗对光的需求则逐渐增加,这可能是增加对根生物量相对投资的结果,因为以这种方式,强光下生长的针叶树幼苗更能保持其内部水分平衡,其生长不会因干旱胁迫而受到严重影响。另外,严重遮荫会引起冷杉幼苗死亡。 植物对光强的生理适应 植物可以通过自身形态和生理特征的调整,来发展不同的光能利用策略从而能够在林中共存。通过一个野外盆栽实验,研究了不同光强下生长的几种树苗的生理特征(第四章)对不同光强的响应与适应。结果显示:强光下,粗枝云杉和红桦的光合能力增加,而岷江冷杉和青榨槭在中度遮荫(25-55%)的条件下光合能力最大。植物叶氮和叶绿素含量增高,而光补偿点和暗呼吸速率降低,这些都是植物对低光环境的适应性反应;而强光下植物叶片和栅栏组织变厚,是对强光的一种保护性反应。 植物对光的可塑性反应 不同植物会表现出对光适应有利的生理和形态可塑性反应。本文对第三章、第四章的实验数据进行可塑性指数分析,来研究植物对光强的表型可塑性反应(第五章)。结果显示,生理特征调整是植物对不同光环境的主要适应途径。红桦和青榨槭的可塑性指数平均值要大于粗枝云杉和岷江冷杉,充分表明这2种阔叶树在生理和形态上较强的可塑性更有利于对光环境的适应,而具有比耐荫树种更强的适应能力。另外,2种针叶树相比,云杉的适应性更强。本研究结果支持树种的生理生态特性决定了其演替状况和生境选择的假说。 植物的光抑制与防御 当植物叶片吸收了过多光能,会发生光抑制现象。植物对光抑制的敏感性及防御能力对其生长具有重要意义。本文通过两个野外盆栽实验,研究了生长在强光下(第六章)和变化光强下(第八章)植物的光抑制现象及其防御策略。结果表明,在强光下或从遮荫状态转入强光下,植物都会发生光抑制,其对光抑制的敏感性与植物的耐荫性(或喜光)和演替状态有密切联系。长期生长在强光下的植物受到光抑制是可恢复的,而当处于荫蔽环境的植物突然暴露于强光下时,受到的光抑制不能完全恢复,可能是(部分)光合机构受到破坏的缘故。粗枝云杉和青榨槭防御光抑制伤害的能力较强,热耗散是其防御光抑制的主要途径。长期的强光作用能使岷江冷杉和红桦发生严重光抑制,甚至光伤害,而红桦能够通过“凋落老叶,萌发新叶”的途径来适应新的强光环境。 How to restore the vegetation of subalpine coniferous forest in eastern Qinghai-Tibet Plateau, and change the trend of ecological deterioration is a very important issue. Acclimation of tree seedlings to different and varing light environment affects to a great extent the successful regeneration and establishment of subalpine coniferous forests in southwestern China’s montane forest areas, because the ability to respond to such changing resource are commonly assumed to be critical to plant success, and have a growth advantage than others. In this paper, several species seedlings in Abies faxoniana community were chosed to study the response and adaptation to light intensity and the interspecific differences of adaptability in six shaded sheds (100, 55, 40, 25, 15 and 7% of full sunlight) in the Maoxian Ecological Station of Chinese Academy of Sciences. Our results could provide a strong theoretical evidence for understanding the forest succession laws of subalpine coniferous forests, and the survival and settlement of seedlings under plantations, and provide scientific direction for the production and management of seedlings, especially the comparative studies of the acclimation to light between the conifer and broadleaf trees could provide new ideas for how to integrate the broad-leaved trees into the artificial coniferous forest. Growth under different light intensity Light intensity plays an important role on plant growth. One field experiments was conducted to study the growth of tree seedlings of Picea asperata, Abies faxoniana, Betula albo-sinensis and Acer davidii under different light intensities. The results showed that plants under low light environment could increase the specific stem length (stem length/ stem dry mass), in order to effectively intercept light resources, while biomass greater allocation to the roots, could make plants under high light environment absorb more water, and avoid drought stress. During the first growing season, the relative growth rates (RGRs) of Betula albo-sinensis and Acer davidii had the greatest values under the 100% of full light, for 55% of Picea asperata, and for 25-40% of Abies faxoniana. However, in the second growing season the the relative growth rates of the two broad-leaved trees changed and were appropriate for 25-55% of full light, for 55-100% of spruce, and for 25-100% of fir. Thus, from the first year to the second year, two broad-leaved seedlings maybe more suitable to partly shading environment, and two coniferous seedlings would have an increase in light demand, which may be an increased root biomass investment. Because in this way, seedlings grown under high light could better maintain their internal water balance, and thus its growth would not be seriously affected by drought stress. In addition, serious shading would cause fir seedlings to die. Acclimation of physiology to light Plants could coexist in forest ecosystem by forming different strategies of light use. One field experiments was conducted to study the acclimation of tree seedlings to different light intensity of Picea asperata, Abies faxoniana, Betula albo-sinensis and Acer davidii. The results showed that the photosynthetic capacity of Picea asperata and Betula albo-sinensis exhibited a general tendency of increase with more light availability; but for Abies faxoniana and Acer davidii seedlings, their highest values of the same parameters were found under intermediate light regime (i.e. 25-55% of PFD relative to full sunlight). Plants under low light environment could increase the specific stem length (stem length/ stem dry mass), in order to effectively intercept light resources. Leaf nitrogen and chlorophyll content increased, while dark respiration rate and light compensation points decreased, all of which were adaptive response to the low light environment. On the contrary, plants under high light environment had the thicken leaves and palisade tissue, which was a protective response to high light. Phenotypic plasticity to light Phenotypic plasticity can be exhibited in morphological and physiological processes. Physiological characteristical adjustment is the main for plant adaptation to different light environment.The means of plasticity indexes for Betula albo-sinensis and Acer davidii seelings were greater than Picea asperata and Abies faxoniana, amplied that the two broad-leaved trees were much more adaptable to the environment. In addition, spruce had the higher adaptablity than fir. The findings supported the hypothesis that the ecological characteristics of the species determined the biological status and its biological habitat selection. Photoinhibition and photoprotection to light Compared with conifer, broad-leaved trees could better change leaf morphology and adjust biomass allocation to adapt to changing light environment. However, excess light can photoinhibit photosynthesis and may lead to photooxidative destruction of the photosynthetic appatus. Two field experiments were conducted to study the photoinhibition of photosynthesis. The results showed that when plants grown under high light environment or plants transferred from low to high irradiance, the four tree seedlings would undergo a period of photoinhibition. In four species, photoinhibited leaves could recover to initial photosynthetic rates when they were long-term planted under high light environment. However, when plants were suddenly exposed to high irradiance, this photoinhibition could not be reversible, may be the photosynthesis apparatus were (or partly) photooxidatively destructed.