231 resultados para Reaction center


Relevância:

60.00% 60.00%

Publicador:

Resumo:

采用柱层析法从菠菜叶绿体中分离纯化得到高等植物光系统Ⅱ(PSⅡ)反应中心色素蛋白复合体Dl/D2/Cyt b559,并对其性质,特别是光破坏作用的分子机理进行了研究。主要结果如下: 1、PSⅡ反应中心复合物所含的色素比大约为Chla/2 Pheo a=6.0。其四阶导数光谱在红区有两个峰,表明该反应中心至少存在两种结合状态的Chla。 2、Dl/D2/Cyt b559复合物的荧光相对产率及发射光谱的谱带位置与样品的浓度直接相关。只有当样品的浓度达到足够稀的程度(Chla和Pheo a总浓度小于1μg/ml),才能得到较真实的荧光光谱,其峰位在681nm处。 3、Dl/D2/Cyt b559复合物的CD光谱在红区(Qy带)有一对反向谱带,正蜂为680nm,负峰为660nm,而在β-胡萝卜素的吸收区没有明显的CD信号。当该反应中心复合物受光破坏后,CD信号明显下降,而且当正峰完全消失后,负峰仍然存在,说明负峰不仅包含P680 的信号,也包含其它色素分子的信号,很可能有部分来源于Pheo a。 4、Dl/D2/Cyt b559复合物在488nm处激发的共振拉曼光谱显示四个主要谱带,其峰位分别在1532(ν1)、1165(ν2)、1010(ν3)和970cm-1(ν4)处,表明PSⅡ反应中心结合的B-胡萝卜素分子是全反式构型。Dl/D2/Cyt b559复合物的色素抽提液的拉曼光谱也显示四个主要的拉曼峰,其中ν4谱带的强度急剧下降,说明PSⅡ反应中心内部结合的β-胡萝卜素分子与抽提液中自由的β-胡萝卜素分子的构象不同,而与光合细菌反应中心内部的类胡萝卜素分子的构象相似,其共轭多烯链的平面也处于扭曲状态。 5、光照使PSⅡ反应中心的原初电子供体P680受到破坏,在光照后的暗放置过程中P680分子继续受到破坏,表明在光照过程中很可能有一个相对稳定的反应中间体产生,以至于光照后暗放置过程中Dl/D2/Cyt b559复合物的光谱特性继续发生变化。也就是说,PSⅡ反应中心Dl/D2/Cyt b559复合物的光破坏不是一步反应,而是一个多步反应或多条途径。 6、光照使Dl/D2/Cyt b559复合物中的组氨酸(His)残基受到很大程度的破坏,甲硫氨酸(Met)残基的含量也略有下降,而其它氨基酸的含量基本保持不变。His残基的破坏很可能与光照后暗放置过程中Dl/D2/Cyt b559复合物的光谱特性变化相关。我们认为His残基的光照破坏很可能是Dl/D2/Cyt b559复合物受光照破坏的另一分子机理。 7、人工电子受体癸基质体醌(DPQ)可以与Dl/D2/Cyt b559复合物进行重组。Dl/D2/Cyt b559复合物的荧光衰减分析表明,在DPQ重组之后,两个长寿命荧光组分(24ns和73ns)的寿命减小,而且占整个荧光的分数也下降,表明这两个长寿命荧光衰减组分均来源于电荷重组过程。同时,β-胡萝卜素分子在DPQ重组之后更易于被光照破坏,这个过程可能与β-胡萝卜素分子的生理功能相关。 8、在没有外加人工电子受体的情况下,光照使DDl/D2/Cyt b559 复合物的多肽组成发生一定变化。SDS-PAGE图谱中出现一个约40KDa的新谱带,同时Dl与D2多肽的表观分子量增加,谱带染色强度下降。 9、本文根据以上实验结果,着重对Dl/D2/Cyt b559复合物光破坏的分子机理进行了分析和讨论,并在D1蛋白裂解的两种可能途经中又增加了一个新的可能导致Dl蛋白裂解的途径,即:His残基的光照破坏可以作为Dl/D2/Cyt b559复合物光破坏及Dl蛋白裂解的又一分子机理,这为深入研究PSⅡ反应中心的光破坏提供了新的线索,也为今后研究活体内光抑制现象的分子机制打下了良好的基础

Relevância:

60.00% 60.00%

Publicador:

Resumo:

全文分两部分,(1).PsⅡ反应中心色素分子光破坏的分子机理研究;(2).PSⅡ反应中心原初反应的动力学机理研究。 在第一部分中,在分离纯化的光系统Ⅱ反应中心Dl/D2/Cyt b559复合物中,采用高效液相色谱技术,首次发现PSⅡ反应中心去镁叶绿素分子的光照破坏,研究了去镁叶绿素的光破坏机理,观察到PsⅡ反应中心内部存在一个与光化学活性无关的去镁叶绿素分子,从而提供了PSⅡ反应中心存在两条电子传递链的第一个实验证据,提出了去镁叶绿素对PsⅡ反应中心的光保护假说和光合作用反应中心第二条电子传递支路的光保护假说。用高效液相色谱技术还观察到PSⅡ反应中心的6个叶绿素a分子,有三种不同的存在状态,认为PSl反应中心的最小色素组成为每个反应中心含有4个叶绿素a和2个去镁叶绿素。用光破坏的方法证明PsⅡ原初电子供体P680是由两个叶绿素n分子组成,认为P680是以一个二聚体形式存在,首次发现P680的光破坏过程包含失去中心镁原子的反应。 在第二部分中,用皮秒和飞秒时间分辨光谱技术,在PsⅡ颗粒、PsⅡ核心复合物和PSⅡ反应中心三个层次上,研究了PsⅡ原初反应的动力学性质,着重研究电荷分离和PsⅡ反应中心内部的能量传递过程。结果表明,B-胡萝卜素和P680之间的能量传递时间常数为350p8左右,去镁叶绿素a与P680之间的能量传递时间为lOOp8左右,提出了可能的动力学模型。 在目前分歧最大的原初电荷分离时间常数测定这一焦点问题上,得到的初步结果表明PsⅡ反应中心电荷分离时间为3-3.5pa左右,这一结论与文献上报道的21pa不同,丽倾向于支持国际上3p8的观点。

Relevância:

60.00% 60.00%

Publicador:

Resumo:

由于光系统Ⅱ反应中心Dl/D2/Cyt b559色素蛋白复合物(PSII-RC)的红 区吸收光谱严重重叠,给其组成特性研究及光抑制分子机理研究造成 了困难,因此我们运用多种光谱分析技术配合计算机数据处理技术对 PSII-RC复合物的组成特性进行了研究,并用自己建立的方法对PSII-RC 的色素和多肽的化学计量进行了进一步确定,另外还重点研究了单线 态氧在PSII-RC光破坏中的作用,据此提出新的PSD[-RC光抑制分子机 理。主要结果如下: 1.用反相HPLC外标法测定我们制备的色谱纯PSR-RC样品的色素化 学计量结果为Chl:Pheo:Car= 6:2:2。我们发现,当PSII-RC中存在微量CP47 时,Chl: Pheo的比例与CP47的含量呈正相关关系,说明较高的Chl比例 可能表示样品中有CP47污染。结果还表明PSII-RC中Car: Pheo的比例也与 CP47含量有关,说明CP47可影响Car在PSII-RC上的结合,这暗示CP47可 能结合Car,或者CP47对PSII-RC上Car的结合位点有影响,这一推测对阐 明CP47的功能有一定启发作用。 2.建立了一种估算PSII-RC多肽化学计量的理论计算方法,即利用计 算机统计PSII-RC中各多肽组分的不同氨基酸残基数量,以确定不同多 肽化学计量时的理论氨基酸残基组成,并与PSlI-RC的实测氨基酸残基 组成进行比较,得到所用PSII-RC样品的多肽化学计量值为D1+D2:Cyt b559-o+邮:I=2:1:1. 3.对PSII-RC的红区吸收光谱进行了高斯解析,发现680 nm附近含有 峰高和半高宽明显不同的两个高斯组分,它们对光抑制处理的响应具 有明显差别,分别表现了P680和Pheo的特征。由此可知,在680nm处除了 有P680的信号外,PSII-RC中的Pheo在这个区域也有跃迁组分。这个结果 表明光抑制进程中PSII-RC红区吸收光谱信号的下降除了P680的破坏 外,还与Pheo的破坏有关。 4.用Ste)anov关系式分析了PSII-RC色素激发态分布的平衡状态,发现 经过暗适应的PSII-RC的激发态可达到充分的平衡,光抑制处理可导致 PSIL-RC激发态平衡受到破坏。 5.用荧光发射光谱观察到PSII-RC在光抑制进程中有弱光破坏和强光 破坏两个破坏过程,前者是与色素间能量传递的色素结合状态与 取向的破坏,后者与色素本身化学结构的破坏有关。通过研究不同激发波长下的发射光谱发现Car的弱光破坏过程比Chl快,暗示Car可能的保护作用,而Pheo的破坏程度比Chl小。从发射光谱组分的光破坏时间 进程推断强光破坏过程导致的色素破坏是多步反应,验证我们小组原 先报导的PSII-RC的多步反应特性。 6.首次将磁圆二色光谱( MCD)技术应用于PSII-RC研究,发现MCD明显表现出比吸收光谱要丰富得多的光谱精细结构,同时还具有较高的灵敏度和分辨率,不经过任何解析就可直接观察到680 nm组分及其它色素组分的变化,而且PSⅡ-RC中的Car没有明显MCD信号,使PSII-RC谱 图简化,便于进一步分析。用MCD技术还观察到光抑制初期Chl从PSII- RC复合物上脱离及Pheo的光破坏现象。 7.分别用HPLC法、吸收光谱高斯解析法、荧光发射光谱分析法和MCD法共四种方法证明了PSII-RC中Pheo的光破坏,充分证实我们小组关于Pheo光破坏的报导,同时还证明Pheo的光破坏是单线态氧作用的结果。 8.给出了单线态氧参与PSII-RC色素和蛋白光破坏的直接实验证 据,即发现光抑制过程中色素和蛋白的破坏受到单线态氧的特异性清除剂的保护,用化学方法在暗中产生的单线态氧同样造成与光抑制相 似的PSII-RC各组分的损伤,由此说明单线态氧是PSII-RC光抑制过程中 的直接破坏因子。 9.提出了PSII-RC中Hiis残基光破坏的一种新的分子机理。用组氨酸残基的特异性化学修饰剂证实以前我们实验室发现的PSI[-RC组氨酸残基的光破坏,根据比较蛋白变性前后的测定结果,初步证明PSIl-RC中 受光破坏的His残基位于P680附近。我们还观察到光抑制处理后,PSII- RC表现与组氨酸残基被修饰后的样品相似的紫外吸收特征,由此提出 PSII-RC中His残基光破坏的一种分子机理,即His残基的眯唑环上的两个氮原子与其它多肽上的游离氨基在单线态氧的作用下发生反应形成酰 胺键而导致PsII-RC多肽间的共价交联,推测PSII-RC中His残基的光破坏与其蛋白的光致交联和降解有直接的因果联系。

Relevância:

60.00% 60.00%

Publicador:

Resumo:

光系统II(PSII)是存在于类囊体膜中的多亚基色素蛋白复合物,是吸收光能、催化光诱导水裂解释放氧气、质子和电子的重要机构。它在体内的基本单位是由外周天线蛋白(LHCII)与PSII核心复合物结合形成的PSII-LHCII超分子复合物,这一结构保证了LHCII吸收的能量能够快速有效的传递到PSII反应中心(RC),进行原初光化学反应。 本论文分为两部分:1、利用捕光色素蛋白复合物(LHCII)与PSII核心复合物在以DGDG、PG、SQDG三种类囊体膜脂形成的脂质体中重组的方法,研究了LHCII与PSII在脂膜上结构与功能的相互作用;2、通过研究光破坏和色素置换对PSII RC的影响,探讨了RC中不同色素的功能。主要结果如下: 1、LHCII与PSII核心复合物的蛋白脂质体研究: 将OECC(粗提核心复合物)、pdOE(纯化核心复合物)、LHCII(大量天线)制剂分别与脂质体重组并研究了其光谱性质。LHCII在与脂质体重组前表现出典型的聚集态光谱特征,重组后吸收和荧光发射峰发生明显蓝移;LHCII、OECC和pdOE三种蛋白脂质体与重组前的样品相比荧光发射强度增加;表明脂环境影响了色素蛋白复合物的聚集状态以及色素和蛋白之间的相互作用。 OECC和pdOE分别与LHCII在脂质体中重组,得到两种重组蛋白(LHCII-OECC和LHCII-pdOE)脂质体,用冰冻蚀刻电镜技术和低温荧光光谱的方法研究其结构和功能特征。LHCII和核心复合物(OECC或pdOE)结合形成PSII-LHCII重组颗粒,并在脂质体中均匀排布,阻止了LHCII晶格状结构的形成。重组蛋白脂质体的吸收光谱既有LHCII的吸收特征,又有核心复合物的特征吸收峰,但低温荧光光谱的主要发射峰是核心复合物的特征峰(684 nm-685 nm),而不是LHCII的特征峰(680 nm);而且激发不同色素得到的荧光发射光谱基本一致,这些结果证明LHCII吸收的能量传递到了核心复合物中,在重组蛋白脂质体中不同色素蛋白复合物在结构和功能上都实现了相互偶联。 通过对OECC或pdOE与LHCII重组形成的蛋白脂质体放氧或DCPIP光还原活性的检测研究了PSII光化学活性特征。LHCII和核心复合物(OECC或pdOE)的重组蛋白脂质体与单独核心脂质体相比,在强光和弱光下光化学活性都明显提高。这从另一个角度证明了核心复合物与LHCII的功能偶联,LHCII的结合使捕光截面积增大,从而使PSII光化学活性增加。 用77K飞秒时间分辨荧光光谱分析了几种蛋白脂质体的能量传递和捕获情况。LHCII、OECC和pdOE三种蛋白脂质体的主要荧光衰减组分分别是670 ps(发射峰在680 nm)、650 ps(发射峰在690 nm)和570 ps(发射峰在685 nm)。LHCII-OECC和LHCII-pdOE脂质体的主要衰减组分分别是940 ps(发射峰在690 nm)和840 ps(发射峰在685 nm),并且出现了一个在核心复合物脂质体和LHCII脂质体中没有的40 ps组分,可以推测,这是LHCII和核心复合物之间达到平衡的时间组分,比激发态衰减的平均寿命要快得多,因此支持了PSII的trap-limited激发能衰减动力学模型。此外,可以看到天线的增大使Chl a荧光衰减的寿命延长,这一特性可能与PSII的光保护机制有关。 LHCII和OECC、LHCII和pdOE在脂质体中都成功的实现了重组,而且在结构和功能上没有明显差异;表明小天线以及23 kDa、17 kDa蛋白可能不是LHCII和核心复合物结合及能量传递所必需的。 2、受体侧光破坏和色素置换对PSII RC的影响: 在800 μmol.m-2 .s-1光照和无外加电子受体、供体的情况下,研究了PSII RC色素的受体侧光破坏情况。Chl a、Pheo和β-Car的光漂白几乎同时发生,其中在680 nm吸收的色素破坏最为显著,670 nm吸收的外周Chl比其他色素更加稳定。荧光发射强度呈先升高后降低的趋势,最大发射峰位逐渐蓝移,表明色素之间的能量传递受到破坏。用β-Car的主要吸收波长488 nm和514.5 nm激发得到两组谱带峰位和强度不同的拉曼光谱,表明在PSII RC中存在两个光谱性质不同的β-Car。光破坏过程中两组谱带的位置和带宽都没有明显变化,表明β-Car的光保护机制不涉及自身构象的变化。 将PSII RC与Cu-Chl a进行色素置换,得到了与Cu-Chl重组的RC(Cu-Chl-RC),含有0.5 Cu-Chl/2Pheo。与对照RC(按同样方式与Chl a置换的RC)和天然RC相比,Cu-Chl含量增加而Chl含量减少,660 nm的吸收增加而670 nm吸收降低,因此推测是外周Chl被替换。色素置换过程对RC的多肽组分及大部分的P680活性没有影响,CD光谱的变化也很小,表明产生CD信号的色素和蛋白环境也没有受到明显影响。但是Cu-Chl-RC的荧光发射强度明显降低,最大发射峰蓝移且峰形发生变化,Cu-Chl可能在重组RC中作为激发态的淬灭剂,阻碍了色素之间的能量传递。

Relevância:

60.00% 60.00%

Publicador:

Resumo:

过去十多年,世界手性药物市场需求迅速增长,手性制药工业的发展壮大,已经引起了各国政府、学术界,特别是企业界的高度重视。手性药物中含有大量的手性胺单元,因此研究高效构建手性胺结构单元的方法具有重要的意义和实用价值,而亚胺的不对称还原是合成手性胺最便捷的方法。 手性有机小分子路易斯碱催化三氯氢硅不对称还原亚胺是最近几年才发展起来的一类新的亚胺不对称还原方法。尽管在对映选择性和底物适用范围等方面已经获得了突破性的进展,但是,高性能的路易斯碱催化剂仅局限于N-甲酰氨基酸酰胺一种类型,而且其底物适用范围和催化活性仍不够理想。因此,发展新型催化剂很有必要。 手性硫氧化物作为手性诱导剂的应用已经有数十年的时间,广泛应用在不对称合成及天然产物的全合成中。理论上,硫氧结构单元也可以作为路易斯碱,对硅烷类试剂进行活化,而且硫氧键还有碳氧键难以比拟的先天优势,硫原子自带手性特征,在反应过程中,手性中心离反应位点更近,因此,从手性硫氧化合物出发,极有可能开发出新的高效手性路易斯碱催化剂。最近,Kobayashi和Khiar在亚胺的不对称烯丙基化反应中用手性亚砜活化烯丙基三氯硅烷,获得了较好的ee值,但反应中手性亚砜的用量都需要化学计量以上,因此还不能算做真正意义上的催化剂,进一步的文献调研也未见真正意义上的硫手性有机小分子催化剂。 本文首次成功将硫手性亚磺酰胺衍生物应用于催化三氯氢硅对亚胺的不对称还原,在经过对亚磺酰胺衍生物的多次结构优化,开发出了合成容易,催化活性和立体选择性都很优良,并且有着前所未有的底物普适性的新型手性路易斯碱催化剂。 我们首先尝试将商品化的20mol%叔丁基亚磺酰胺和对甲基亚磺酰胺直接用作催化剂催化三氯氢硅对亚胺的不对称还原,尽管仅获得中等的收率和很低的对映选择性,但证明我们的设计思路是可行的。在此基础上,我们以叔丁基亚磺酰胺为原料和基本骨架,设计合成了一系列的亚磺酰胺类催化剂,通过对催化剂的结构改造,发现当催化剂中存在较强酸性的酚羟基时,催化效果得到大幅提高。随着对催化剂的进一步结构优化,我们找到了一个结构简单,催化效果还不错的催化剂,经过反应条件优化以后,催化反应的收率最高能达到98%,对映选择性最高达93%,并且这个催化剂的底物适应范围比之前报道的催化剂都要广泛。针对酚羟基在催化剂中的重要作用,我们进行了仔细的机理研究后发现,在催化反应中,催化剂极有可能是通过双分子机理去活化三氯氢硅从而实现不对称催化的,而酚羟基的作用就是通过分子间氢键促进双分子催化剂与三氯氢硅的络合。受此启发,我们设计了一系列具有双齿结构的催化剂,通过对双齿催化剂的结构优化,最终筛选出了一个结构更加简单,但催化效果更好的双齿催化剂。10mol%该催化剂催化亚胺还原最高获得95%的收率和96%的ee值。这一结果也进一步验证了我们先前对催化剂机理的推测。 随后,我们还尝试将这些催化剂用于二级胺和芳香酮的直接还原胺化反应中,虽然能获得不错的收率,但对映选择性却很差,我们对反应条件进行了仔细的摸索,仍然没有获得突破。但这些实验为进一步研究二级胺和酮的不对称直接还原胺化反应奠定了良好的基础。 In the past decade, the rapid growth of the global chiral drug market and the significant development of the chiral pharmaceutical industry have attracted a great deal of attention from government, academia and enterprises. Chiral amine is an important structural motif of chiral drugs. Therefore, development of methods for the construction of this motif is of great importance. Catalytic enantioselective reduction of imines represents one of the most straightforward and efficient methods for the preparation of chiral amines. The chiral Lewis base organocatalysts promoted asymmetric reduction of imines by HSiCl3 has recently achieved significant advancements. Although big breakthroughs have been made in terms of substrate generality and enantioselectivity, the highly effective catalysts are limited to N-formyl amino acid amides, of which the efficiency and substrate scope remain unsatisfactory. Therefore, development of novel organocatalysts for this transformation is in great demand. Chiral sulfoxides have been well established as efficient and versatile stereocontrollers and have been extensively used in asymmetric synthesis and total synthesis of natural products. The S=O structural motif of sulfoxide could also behave as Lewis base activator for cholorsilane reagents, which, moreover, could be even better than caboxamide considering that the sulfur atom is chiral and thus the chirality center is closer to the reaction center. There exist great potentials that highly effective novel Lewis base organocatalysts could be developed starting from S-chiral sulfoxides. Recently, several S-chiral sulfoxides were reported by Kobayashi and Khiar to be used as Lewis base catalyst to activate allyltrichlorosilanes in asymmetric allylations and good enantioselectivities were obtained. However, these S-chiral sulfoxides were all used at a more than stoichiometric amount and were thus not authentically catalytic. A careful literature survey further revealed that there has been so far no S-chiral organocatalyst available. In this study, we, for the first time, successfully used S-chiral sulfinamides as Lewis base organocatalysts for the asymmetric reduction of ketimines by HSiCl3. After several rounds of structural optimization, we developed the first example of highly effective S-chiral organocatalysts, which promoted the asymmetric reduction of ketimines with trichlorosilane in high yield and excellent enantioselectivity with unprecedented substrate spectrum. In our initial practice, we examined 20mol% of the commercially available (R)-tert-butanesulfinamide and (S)-toluenesulfinamide as the catalyst in the hydrosilylation of ketimine. Although the product was only furnished in moderate yield and low ee, these results demonstrated that our strategy of catalyst design is on the right way. Next, starting from chiral tert-butanesulfinamide, we prepared a series of tert-butanesulfinamide derivatives via simple reductive amination and examined their catalytic efficiencies in the reduction of ketimine. We found that the catalyst bearing a phenolic hydroxyl group exhibited good reactivity and enantioselectivity. On the basis of which, we obtained a structurally simple and highly effective novel organocatalyst, affording the product in 98% yield and 93% ee under optimal reaction conditions. After careful exploration on the role of phenolic hydroxyl group in the catalyst, we speculated that two molecules of the catalyst be involved in the course of reaction, of which the assembly around the silicon center is facilitated by the intermolecular hydrogen bonding through the phenolic hydroxyl groups. Thus, we incorporated two units of sulfonamide into one molecular and prepared a new type of bissulfinamides organocatalysts and examined their catalytic efficiencies in the reduction of ketimine. After optimizing the structure of these catalysts, we finally obtained a novel organocatalyst which has even simpler molecular structure but showed better efficacies, 10mol% of which afforded up to 97% yield and 96% ee under optimal reaction conditions. These results further proved our speculation about the catalytic mechanism. We also examined the newly developed S-chiral organocatalysts in direct asymmetric reductive amination of secondary amines with aromatic ketone. The product was furnished in good yield but in low ee. No better results could be obtained despite our intense opimization efforts. Nevertheless, these experiments laid excellent foundations for eventual success.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Investigation of the redox thermodynamics of horse heart cytochrome c at bare glassy carbon electrodes has been performed using cyclic voltammetry with a nonisothermal electrochemical cell. The thermodynamic parameters of the electron-transfer reaction of cytochrome c have been estimated in different component buffer solutions. The change DELTAS(re)-degrees in reaction center entropy and the formal potential E-degrees' (at 25-degrees-C, vs. standard hydrogen electrode (SHE)) for cytochrome c are found to be -64.1 J K-1 mol-1 and 0.251 V in phosphate buffer, -64.8 J K-1 mol-1 and 0.257 V in Tris + HCl buffer, -65.6 J K-1 mol-1 and 0.261 V in Tris+CH3COOH buffer (pH 7.0, ionic strength 100 mM). The temperature dependence of the formal potential obtained in phosphate buffer with or without NaCl in the range 5-55-degrees-C shows biphase characteristics in an alkaline solution with an intersection point at ca. 44-degrees-C or 42-degrees-C, which should be due to a structural change in the protein moiety of cytochrome c. However, in acidic and neutral solutions only a monotonic relationship between E-degrees' and temperature is observed. The effect of the buffer component on E-degrees' for cytochrome c is also discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The deposition of CdO center dot nH(2)O On CdTe nanoparticles was studied in an aqueous phase. The CdTe nanocrystals (NCs) were prepared in aqueous solution through the reaction between Cd2+ and NaHTe in the presence of thioglycolic acid as a stabilizer. The molar ratio of the Cd2+ to Te2- in the precursory solution played an important role in the photoluminescence of the ultimate CdTe NCs. The strongest photoluminescence was obtained under 4.0 of [Cd2+]/[Te2-] at pH similar to 8.2. With the optimum dosage of Cd(II) hydrous oxide deposited on the CdTe NCs, the photoluminescence was enhanced greatly. The photoluminescence of these nanocomposites was kept constant in the pH range of 8.0-10.0, but dramatically decreased with an obvious blue-shifted peak while the pH was below 8.0. In addition, the photochemical oxidation of CdTe NCs with cadmium hydrous oxide deposition was markedly inhibited.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The deposition of CdO center dot nH(2)O On CdTe nanoparticles was studied in an aqueous phase. The CdTe nanocrystals (NCs) were prepared in aqueous solution through the reaction between Cd2+ and NaHTe in the presence of thioglycolic acid as a stabilizer. The molar ratio of the Cd2+ to Te2- in the precursory solution played an important role in the photoluminescence of the ultimate CdTe NCs. The strongest photoluminescence was obtained under 4.0 of [Cd2+]/[Te2-] at pH similar to 8.2. With the optimum dosage of Cd(II) hydrous oxide deposited on the CdTe NCs, the photoluminescence was enhanced greatly. The photoluminescence of these nanocomposites was kept constant in the pH range of 8.0-10.0, but dramatically decreased with an obvious blue-shifted peak while the pH was below 8.0. In addition, the photochemical oxidation of CdTe NCs with cadmium hydrous oxide deposition was markedly inhibited.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The electrochemical properties of a series of structurally related fullerooxazoles, [6,6] cyclic phenylimidate C-60 (1), 1,2-benzal-3-N-4-O-cyclic phenylimidate C-60 (2), and 1,4-dibenzyl-2,3-cyclic phenylimidate C-60 (3), are described, and the spectroscopic characterizations of their anionic species are reported. The results show that compounds I and 2 undergo retro-cycloaddition reactions that lead to the formation of C-60 and C61HPh, respectively, upon two-electron-transfer reduction. However, compound 3 demonstrates much more electrochemical stability as no retro-cycloaddition reaction occurs under similar conditions. Natural bond orbital (NBO) calculations on charge distribution show there is no significant difference among the dianions of 1, 2, and 3, indicating that the electrochemical stability of 3 is unlikely to be caused by the charge distribution difference of the dianions of three compounds. Examination on the crystal structure of compound 3 reveals close contacts of the C-H group with the heteroatoms (N and O) of cyclic phenylimidate, suggesting the existence of C-H center dot center dot center dot X (X = N, O) intramolecular hydrogen bonding among the addends, which is further confirmed by NBO analysis.