99 resultados para Random equivalent availability
Resumo:
The forces of random wave plus current acting on a simplified offshore platform (jacket) model have been studied numerically and experimentally. The numerical results are in good agreement with experiments. The mean force can be approximated as a function of equivalent velocity parameter and the root-mean-square force as a function of equivalent significant wave height parameter.
Resumo:
A meso material model for polycrystalline metals is proposed, in which the tiny slip systems distributing randomly between crystal slices in micro-grains or on grain boundaries are replaced by macro equivalent slip systems determined by the work-conjugate principle. The elastoplastic constitutive equation of this model is formulated for the active hardening, latent hardening and Bauschinger effect to predict macro elastoplastic stress-strain responses of polycrystalline metals under complex loading conditions. The influence of the material property parameters on size and shape of the subsequent yield surfaces is numerically investigated to demonstrate the fundamental features of the proposed material model. The derived constitutive equation is proved accurate and efficient in numerical analysis. Compared with the self-consistent theories with crystal grains as their basic components, the present theory is much simpler in mathematical treatment.
Resumo:
The Mapping Closure Approximation (MCA) approach is developed to describe the statistics of both conserved and reactive scalars in random flows. The statistics include Probability Density Function (PDF), Conditional Dissipation Rate (CDR) and Conditional Laplacian (CL). The statistical quantities are calculated using the MCA and compared with the results of the Direct Numerical Simulation (DNS). The results obtained from the MCA are in agreement with those from the DNS. It is shown that the MCA approach can predict the statistics of reactive scalars in random flows.
Resumo:
The optimal bounded control of quasi-integrable Hamiltonian systems with wide-band random excitation for minimizing their first-passage failure is investigated. First, a stochastic averaging method for multi-degrees-of-freedom (MDOF) strongly nonlinear quasi-integrable Hamiltonian systems with wide-band stationary random excitations using generalized harmonic functions is proposed. Then, the dynamical programming equations and their associated boundary and final time conditions for the control problems of maximizinig reliability and maximizing mean first-passage time are formulated based on the averaged It$\ddot{\rm o}$ equations by applying the dynamical programming principle. The optimal control law is derived from the dynamical programming equations and control constraints. The relationship between the dynamical programming equations and the backward Kolmogorov equation for the conditional reliability function and the Pontryagin equation for the conditional mean first-passage time of optimally controlled system is discussed. Finally, the conditional reliability function, the conditional probability density and mean of first-passage time of an optimally controlled system are obtained by solving the backward Kolmogorov equation and Pontryagin equation. The application of the proposed procedure and effectiveness of control strategy are illustrated with an example.
Resumo:
A fiber web is modeled as a three-dimensional random cylindrical fiber network. Nonlinear behavior of fluid flowing through the fiber network is numerically simulated by using the lattice Boltzmann (LB) method. A nonlinear relationship between the friction factor and the modified Reynolds number is clearly observed and analyzed by using the Fochheimer equation, which includes the quadratic term of velocity. We obtain a transition from linear to nonlinear region when the Reynolds numbers are sufficiently high, reflecting the inertial effect of the flows. The simulated permeability of such fiber network has relatively good agreement with the experimental results and finite element simulations.
Resumo:
The expansion property of cement mortar under the attack of sulfate ions is studied by experimental and theoretical methods. First, cement mortars are fabricated with the ratio of water to cement of 0.4, 0.6, and 0.8. Secondly, the expansion of specimen immerged in sulphate solution is measured at different times. Thirdly, a theoretical model of expansion of cement mortar under sulphate erosion is suggested by virtue of represent volume element method. In this model, the damage evolution due to the interaction between delayed ettringite and cement mortar is taken into account. Finally, the numerical calculation is performed. The numerical and experimental results indicate that the model perfectly describes the expansion of the cement mortar.
Resumo:
Most simulations of random sphere packing concern a cubic or cylindric container with periodic boundary, containers of other shapes are rarely studied. In this paper, a new relaxation algorithm with pre-expanding procedure for random sphere packing in an arbitrarily shaped container is presented. Boundaries of the container are simulated by overlapping spheres which covers the boundary surface of the container. We find 0.4 similar to 0.6 of the overlap rate is a proper value for boundary spheres. The algorithm begins with a random distribution of small internal spheres. Then the expansion and relaxation procedures are performed alternately to increase the packing density. The pre-expanding procedure stops when the packing density of internal spheres reaches a preset value. Following the pre-expanding procedure, the relaxation and shrinking iterations are carried out alternately to reduce the overlaps of internal spheres. The pre-expanding procedure avoids the overflow problem and gives a uniform distribution of initial spheres. Efficiency of the algorithm is increased with the cubic cell background system and double link data structure. Examples show the packing results agree well with both computational and experimental results. Packing density about 0.63 is obtained by the algorithm for random sphere packing in containers of various shapes.
Resumo:
An apparatus of low-temperature controlling for fatigue experiments and its crack measuring system were developed and used for offshore structural steel A131 under conditions of both low temperature and random sea ice. The experimental procedures and data processing were described, and a universal random data processing software for FCP under spectrum loading was written. Many specific features of random ice-induced FCP which differed with constant amplitude FCP behaviours were proposed and temperature effect on ice-induced FCP was pointed out with an easily neglected aspect in designing for platforms in sea ice emphasized. In the end, differences of FCP behaviours between sea ice and ocean wave were presented.
Resumo:
The prediction of cracking direction in composite materials is of significance to the design of composite structures. This paper presents several methods for predicting the cracking direction in the double grooved tension-shear specimen which gives mixed-mode cracking. Five different criteria are used in this analysis: two of them have been used by other investigators and the others are proposed by the present authors. The strain energy density criterion proposed by G.C. Sih is modified to take account of the influence of the anisotropy of the strength on the direction of crack. The two failure criteria of Tsai-Hill and Norris are extended to predict the crack orientation. The stress distributions in the near-notch zone are calculated by using the 8-node quadrilateral isoparametric finite element method. The predictions of all the criteria except one are in good agreement with the experimental measurement. In addition, on the basis of the FEM results, the size of the zone in which the singular term is dominant is estimated.
Resumo:
The LY12-cz aluminium alloy sheet specimens with a central hole were tested under constant amplitude loading, Rayleigh narrow band random loading and a typical fighter broad band random loading. The fatigue life was estimated by means of the nominal stress and the Miner's rule. The stress cycles were distinguished by the rainflow count, range count and peak value count, respectively. The comparison between the estimated results and the test results was made. The effects of random loading sequence and small load cycles on fatigue life were also studied.
Resumo:
Most of the existing mathematical models for analyzing the dynamic response of TLP are based on explicit or implicit assumptions that motions (translations and rotations) are small magnitude. However, when TLP works in severe adverse conditions, the a priori assumption on small displacements may be inadequate. In such situation, the motions should be regarded as finite magnitude. This paper will study stochastic nonlinear dynamic responses of TLP with finite displacements in random waves. The nonlinearities considered are: large amplitude motions, coupling the six degrees-of-freedom, instantaneous position, instantaneous wet surface, free surface effects and viscous drag force. The nonlinear dynamic responses are calculated by using numerical integration procedure in the time domain. After the time histories of the dynamic responses are obtained, we carry out cycle counting of the stress histories of the tethers with rain-flow counting method to get the stress range distribution.
Resumo:
The expansion property of cement mortar under the attack of sulfate ions is studied by experimental and theoretical methods. First, cement mortars are fabricated with the ratio of water to cement of 0.4, 0.6, and 0.8. Secondly, the expansion of specimen immerged in sulphate solution is measured at different times. Thirdly, a theoretical model of expansion of cement mortar under sulphate erosion is suggested by virtue of represent volume element method. In this model, the damage evolution due to the interaction between delayed ettringite and cement mortar is taken into account. Finally, the numerical calculation is performed. The numerical and experimental results indicate that the model perfectly describes the expansion of the cement mortar.
Resumo:
We present a method of image-speckle contrast for the nonprecalibration measurement of the root-mean-square roughness and the lateral-correlation length of random surfaces with Gaussian correlation. We use the simplified model of the speckle fields produced by the weak scattering object in the theoretical analysis. The explicit mathematical relation shows that the saturation value of the image-speckle contrast at a large aperture radius determines the roughness, while the variation of the contrast with the aperture radius determines the lateral-correlation length. In the experimental performance, we specially fabricate the random surface samples with Gaussian correlation. The square of the image-speckle contrast is measured versus the radius of the aperture in the 4f system, and the roughness and the lateral-correlation length are extracted by fitting the theoretical result to the experimental data. Comparison of the measurement with that by an atomic force microscope shows our method has a satisfying accuracy. (C) 2002 Optical Society of America.
Resumo:
This paper studies the correlation properties of the speckles in the deep Fresnel diffraction region produced by the scattering of rough self-affine fractal surfaces. The autocorrelation function of the speckle intensities is formulated by the combination of the light scattering theory of Kirchhoff approximation and the principles of speckle statistics. We propose a method for extracting the three surface parameters, i.e. the roughness w, the lateral correlation length xi and the roughness exponent alpha, from the autocorrelation functions of speckles. This method is verified by simulating the speckle intensities and calculating the speckle autocorrelation function. We also find the phenomenon that for rough surfaces with alpha = 1, the structure of the speckles resembles that of the surface heights, which results from the effect of the peak and the valley parts of the surface, acting as micro-lenses converging and diverging the light waves.
Resumo:
Based on the rigorous formulation of integral equations for the propagations of light waves at the medium interface, we carry out the numerical solutions of the random light field scattered from self-affine fractal surface samples. The light intensities produced by the same surface samples are also calculated in Kirchhoff's approximation, and their comparisons with the corresponding rigorous results show directly the degree of the accuracy of the approximation. It is indicated that Kirchhoff's approximation is of good accuracy for random surfaces with small roughness value w and large roughness exponent alpha. For random surfaces with larger w and smaller alpha, the approximation results in considerable errors, and detailed calculations show that the inaccuracy comes from the simplification that the transmitted light field is proportional to the incident field and from the neglect of light field derivative at the interface.